relax

Version 3.2.1

Molecular dynamics by

NMR data analysis

May 23, 2014

Contents

Preface - citing relax xxiii
I The basics 1
1 Introduction 3
1.1 Program features. 4
1.1.1 Literatureo 4

1.1.2 Supported NMR theories 4

1.1.3 Data analysis toolso o 5

1.1.4 Data visualisation 5

1.1.5 Interfacing with other programs 6

1.1.6 The user interfaces (UI) 6

1.2 Howtouserelax 6
1.2.1 The prompt 6

1.2.2 Python 7

1.2.3 User functions 8

1.2.4 The help system o 9

1.2.5 Tab completion 9

1.2.6 The data pipe 10

1.2.7 The spin and interatomic data containers 11

1.2.8 Scripting 11

1.2.9 The test suite 14

1.2.10 The GUIL e 14

1.2.11 Access to the internals of relax 16

1.3 The multi-processor framework 17
1.3.1 Introduction to the multi-processor 17

1.3.2 Usage of the multi-processor 19

1.3.3 Further details 19

1.4 Usage of thenamerelax L. 22

2 Installation instructions 23
2.1 Dependencieso 23
2.2 Installation 24
2.2.1 The source releases 24

222 Installation on GNU/Linux 24

2.2.3 Installation on MS Windows 25

2.2.4 Installation on Mac OS X 25

2.2.5 Installation on your OS 26

2.2.6 Running a non-compiled version 26

ii

CONTENTS

2.3 Optional programs e
2.3.1 Grace o i e e e
2.3.2 OpenDX e
2.3.3 Molmol e
2.3.4 PyMOL
2.3.5 Dasha e
2.3.6 Modelfreed

3 Open source infrastructure

3.1 Therelax web sites

3.2 Themailing lists
3.2.1 relax-announce e i e e e
3.2.2 relax-users e e e
3.2.3 relax-devel
3.2.4 relax-commits L Lo L
3.2.5 Replying toamessage Lo oL

3.3 Reporting bugs

3.4 Latest sources — the relax repositories

3.5 News . . . e

3.6 The relax distribution archives

The relax data model

4.1 The concept of the relax datamodel

4.2 Thedatamodel
4.2.1 The relax data store
4.2.2 Molecule, residue, and spin containers

4.3 Interatomic data containers

4.4 Setup in the prompt/script UT
4.4.1 Script mode — spins from structural data
4.4.2 Script mode — spins from a sequence file
4.4.3 Script mode — manual construction

4.5 Setupinthe GUL
4.5.1 GUI mode — setting up the data pipe
4.5.2 GUI mode — spins from structural data
4.5.3 GUI mode — spins from a sequence file.
4.5.4 GUI mode — manual construction
4.5.5 GUI mode — deselect spins

4.6 Thenext steps e

11

The specific analyses

Relaxation curve-fitting
Introduction to relaxation curve-fitting

5.1
5.2

5.3

From spectra to

peak intensities for the relaxation rates

5.2.1 Temperature control and calibration
5.2.2 Spectral processingo
5.2.3 Measuring peak intensitieso L L.
Relaxation curve-fitting in the prompt/script Ul mode
5.3.1 Relax-fit script mode — the sample script

iii

26
26
27
27
27
27
27

29
29
29
29
30
30
30
30
30
31
31
31

33
33
33
33
34
37
37
37
38
39
39
39
40
43
44
44
46

47

v

CONTENTS

5.3.2 Relax-fit script mode — initialisation of the data pipe 55
5.3.3 Relax-fit script mode — setting up the spin systems 56
5.3.4 Relax-fit script mode — loading the data 56
5.3.5 Relax-fit script mode — the rest of the setup 58
5.3.6 Relax-fit script mode — optimisation of exponential curves 58
5.3.7 Relax-fit script mode — error analysis 59
5.3.8 Relax-fit script mode — finishing off 59
5.4 The relaxation curve-fitting auto-analysis in the GUL 61
5.4.1 Relax-fit GUI mode — initialisation of the data pipe 61
5.4.2 Relax-fit GUI mode — general setup 62
5.4.3 Relax-fit GUI mode — setting up the spin systems 63
5.4.4 Relax-fit GUI mode — unresolved spins 63
5.4.5 Relax-fit GUI mode — loading the data 63
5.4.6 Relax-fit GUI mode — optimisation and error analysis 66
5.5 Final checks of the curve-fitting 68
Calculating the NOE 69
6.1 Introduction to the steady-state NOE 69
6.2 From spectra to peak intensities for the NOE 69
6.3 Calculation of the NOE in the prompt/script Ul mode 70
6.3.1 NOE script mode — the sample script 70
6.3.2 NOE script mode — initialisation of the data pipe 71
6.3.3 NOE script mode — setting up the spin systems 71
6.3.4 NOE script mode — loading the data 71
6.3.5 NOE script mode — setting the errors 72
6.3.6 NOE script mode — unresolved spins 72
6.3.7 NOE script mode — the NOE calculation 73
6.3.8 NOE script mode — viewing the results 73
6.4 The NOE auto-analysis in the GUL 75
6.4.1 NOE GUI mode — initialisation of the data pipe 75
6.4.2 NOE GUI mode — general setup 76
6.4.3 NOE GUI mode — setting up the spin systems 7
6.4.4 NOE GUI mode — unresolved spins 7
6.4.5 NOE GUI mode - loading thedata 7
6.4.6 NOE GUI mode — the NOE calculation 80
Model-free analysis 83
7.1 Model-free theory 83
7.1.1 The chi-squared function — x2(6) 83
7.1.2 The relaxation equations — R/(0) 84
7.1.3 The spectral density functions — J(w) 84
7.14 Brownian rotational diffusion o000 85
7.1.5 The model-free models 0oL, 87
7.1.6 Model-free optimisation theory 88
7.2 Optimisation of a single model-free model 92
7.2.1 Single model-free model script mode — the sample script 92
7.2.2 Single model-free model script mode — explanation 93
7.3 Optimisation of all model-free models 93

7.3.1 All model-free models script mode — the sample script 93

CONTENTS

7.4

7.5
7.6
7.7

7.8

7.9

7.3.2 All model-free models script mode — explanation
Model-free model selection L
7.4.1 Model-free model selection script mode — the sample script
7.4.2 Model-free model selection script mode — explanation

The methodology of Mandel et al., 1995
The diffusion seeded paradigm
The new model-free optimisation protocol

7.7.1 The new protocol — model-free models
7.7.2 The new protocol — the diffusion tensor
7.7.3 The universal solution &4
7.7.4 Model-free analysis in reverse
The new protocol in the prompt/script Ul mode
7.8.1 d’Auvergne protocol script mode — the sample script
7.8.2 d’Auvergne protocol script mode — analysis variables
7.8.3 d’Auvergne protocol script mode — data pipe initialisation
7.8.4 d’Auvergne protocol script mode — setting up the spin systems . .
7.8.5 d’Auvergne protocol script mode — loading the data
7.8.6 d’Auvergne protocol script mode — deselection
7.8.7 d’Auvergne protocol script mode — relaxation interactions
7.8.8 d’Auvergne protocol script mode — execution

The new protocol in the GUL

7.9.1 d’Auvergne protocol GUI mode — data pipe initialisation

7.9.2 d’Auvergne protocol GUI mode — general setup . . .

7.9.3 d’Auvergne protocol GUI mode — setting up the spin systems . . .

7.9.4 d’Auvergne protocol GUI mode — unresolved spins .
7.9.5 d’Auvergne protocol GUI mode — loading the data .

7.9.6 d’Auvergne protocol GUI mode — relaxation interactions

7.9.7 d’Auvergne protocol GUI mode — spin isotopes . . .

7.9.8 d’Auvergne protocol GUI mode — the rest of the setup

7.9.9 d’Auvergne protocol GUI mode — execution
7.9.10 d’Auvergne protocol GUI mode — completion
7.9.11 d’Auvergne protocol GUI mode — BMRB deposition

8 Reduced spectral density mapping

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Introduction to reduced spectral density mapping
J(w) mapping script mode — the sample script
J(w) mapping script mode — data pipe and spin system setup
J(w) mapping script mode — relaxation data loading
J(w) mapping script mode — relaxation interactions
J(w)
J(w)

w) mapping script mode — visualisation and data output .

9 Consistency testing

9.1
9.2

9.3
9.4
9.5

Introduction to the consistency testing of relaxation data . .
Consistency testing in the prompt/script Ul mode
9.2.1 Consistency testing script mode — the sample script

w) mapping script mode — calculation and error propagation

Consistency testing script mode — data pipe and spin system setup

Consistency testing script mode — relaxation data loading . .
Consistency testing script mode — relaxation interactions . .

95

95

95

95

96

96

99

99

99
101
101
104
104
109
109
110
111
111
111
112
113
114
114
115
116
116
119
121
122
122
124
124

127
127
127
128
129
129
130
130

CONTENTS

9.6 Consistency testing script mode — calculation and error propagation
9.7 Consistency testing script mode — visualisation and data output

10 The N-state model or ensemble analysis

10.1 Introduction to the N-state model
10.2 Experimental data support for the N-state model
10.2.1 RDCs in the N-state model
10.2.2 PCSs in the N-state model
10.2.3 NOEs in the N-state model
10.3 Determining stereochemistry in dynamic molecules
10.3.1 Stereochemistry — the auto-analysis
10.3.2 Stereochemistry — the sample script

11 Relaxation dispersion

11.1 Introduction to relaxation dispersion.
11.1.1 The modelling of dispersion data
11.1.2 Implemented models L.
11.1.3 Dispersion model summary

11.2 The base dispersion models Lo o oL
11.2.1 The R2eff model
11.2.2 The model for no chemical exchange relaxation

11.3 The analytic CPMG models
11.3.1 The LM63 2-site fast exchange CPMG model
11.3.2 The LM63 3-site fast exchange CPMG model
11.3.3 The full CR72 2-site CPMG model
11.3.4 The reduced CR72 2-site CPMG model
11.3.5 The IT99 2-site CPMG model
11.3.6 The TSMFKO01 2-site CPMG model
11.3.7 The full B14 2-site CPMG model
11.3.8 The reduced B14 2-site CPMG model

11.4 The numeric CPMG models
11.4.1 The NS 2-site expanded CPMG model
11.4.2 The full NS 2-site 3D CPMG model
11.4.3 The reduced NS 2-site 3D CPMG model
11.4.4 The full NS 2-site star CPMG model
11.4.5 The reduced NS 2-site star CPMG model

11.5 The analytic MMQ CPMG models
11.5.1 The MMQ CR72 model

11.6 The numeric MMQ CPMG models
11.6.1 The NS MMQ 2-site model
11.6.2 The NS MMQ 3-site linear model
11.6.3 The NS MMQ 3-site model

11.7 The analytic Ry, models
11.7.1 The M61 2-site fast exchange Ry, model
11.7.2 The M61 skew 2-site fast exchange Ry, model
11.7.3 The DPL94 2-site fast exchange Ri, model
11.7.4 The TP02 2-site exchange Ry, model
11.7.5 The TAPO3 2-site exchange Rj, model
11.7.6 The MPO05 2-site exchange Ry, model

136
136

139
139
140
140
140
141
141
141
142

CONTENTS

11.8 The numeric Ry, models
11.8.1 The NS 2-site Ry, model
11.8.2 The NS 3-site Ry, model
11.8.3 The NS 3-site linear Ry, model

11.9 Relaxation dispersion optimisation theory
11.9.1 The relaxation dispersion auto-analysis
11.9.2 Dispersion curve insignificance
11.9.3 The relaxation dispersion space.
11.9.4 The clustered relaxation dispersion analysis
11.9.5 Dispersion parameter grid search
11.9.6 Dispersion parameter optimisation
11.9.7 Relaxation dispersion parameter constraints
11.9.8 Relaxation dispersion diagonal scaling
11.9.9 Relaxation dispersion model elimination
11.9.10 Monte Carlo simulation elimination
11.9.11 Relaxation dispersion on a computer cluster using OpenMPI . . .

11.10 To do — dispersion features yet to be implemented

11.11 Tutorial for adding relaxation dispersion models

11.12 Comparison of dispersion analysis software

11.13 Analysing dispersion in the prompt/script Ul mode
11.13.1 Dispersion script mode — the sample script
11.13.2 Dispersion script mode — imports
11.13.3 Dispersion script mode — analysis variables
11.13.4 Dispersion script mode — initialisation of the data pipe
11.13.5 Dispersion script mode — setting up the spin systems
11.13.6 Dispersion script mode — loading the data
11.13.7 Dispersion script mode — the rest of the setup
11.13.8 Dispersion script mode — execution

11.14 The relaxation dispersion auto-analysis in the GUI
11.14.1 Dispersion GUI mode — two analyses
11.14.2 Dispersion GUI mode — computation time
11.14.3 Dispersion GUI mode — initialisation of the data pipe
11.14.4 Dispersion GUI mode — general setup
11.14.5 Dispersion GUI mode — setting up the spin systems
11.14.6 Dispersion GUI mode — unresolved spins
11.14.7 Dispersion GUI mode — dispersion setup
11.14.8 Dispersion GUI mode — loading the data
11.14.9 Dispersion GUI mode — choosing the models to optimise
11.14.10 Dispersion GUI mode — optimisation settings
11.14.11 Dispersion GUI mode — execution of the non-clustered analysis . .
11.14.12 Dispersion GUI mode — inspection of the results
11.14.13 Dispersion GUI mode — comparing models
11.14.14 Dispersion GUI mode — the clustered analysis
11.14.15 Dispersion GUI mode — comparison of the analyses

IIT Power users

12 relax development

vii

177
178
178
180
182
182
184
184
184
185
186
186
188
189
189
190
190
191
191
195
195
197
198
199
200
200
202
203
204
204
205
205
206
207
208
208
209
218
219
220
221
225
226
228

231

233

viii CONTENTS

12.1 Version control using Subversiono, 233
12.2 Coding conventions Lo 234
12.2.1 Indentationo 234
12.2.2 Docstringso 234
12.2.3 Variable, function, and class names 235
12.24 Whitespaceo 237
12.2.5 Comments 238
12.3 Submitting changes to the relax project 238
12.3.1 Submitting changes as apatch 238
12.3.2 Modification of official releases — creating patches with diff 239
12.3.3 Modification of the latest sources — creating patches with Subversion239
124 Committers L 239
12.4.1 Becoming a committer 000 239
12.4.2 Joining Gnal L 240
12.4.3 Joining the relax project oo 240
12.4.4 Format of the commit logs 240
12.4.5 Discussing major changes 242
12,5 Branches e 242
12.5.1 Branch creation o000 242
12.5.2 Keeping the branch up to date using svomerge.py 242
12.5.3 Merging the branch back into the main line 243
12.6 The SCons build system 244
12.6.1 SConshelp e 244
12.6.2 C module compilation 244
12.6.3 Compilation of the user manual (PDF version) 244
12.6.4 Compilation of the user manual (HTML version) 244
12.6.5 Compilation of the API documentation (HTML version) 244
12.6.6 Making distribution archives 245
12.6.7 Cleaning up« v v i 245
12.7 The core design of relax L o 246
12.7.1 The divisions of relax’s source code 246
12.7.2 The major components of relax 246
12.8 The mailing lists for development 248
12.8.1 Private vs. public messages 248
12.9 The bug, task, and support request trackers 249
12.9.1 Submitting a bugreporto 249
12.9.2 Assigning an issue to yourself 249
12.9.3 Closing anissue 250
12.10 Links, links, and more links o oL, 250
12.10.1 Navigation 250
12.10.2 Search engine indexing 251
IV Advanced topics 253
13 Optimisation 255
13.1 Implementation L 255
13.1.1 Theinterfaceo 255

13.1.2 The minfx package 255

CONTENTS ix

13.2 The optimisation space 257
13.3 Topology of the space 257
13.3.1 The function value 257
13.3.2 Thegradient L 258
13.3.3 The Hessian 258

13.4 Optimisation algorithms L. 259
13.4.1 Line search methods 0. 259
13.4.2 Trust region methods 261
13.4.3 Conjugate gradient methods 262
13.4.4 Hessian modifications L. 263
13.4.5 Other methods 263

13.5 Constraint algorithms Lo o 264
13.5.1 Method of Multipliers algorithm 265
13.5.2 Logarithmic barrier constraint algorithm 266

13.6 Diagonal scaling L e 266
14 Optimisation of relaxation data — values, gradients, and Hessians 269
14.1 Introduction to the mathematics behind the optimisation of relaxation data 269
14.2 The four parameter combinations L. 269
14.2.1 Optimisation of the model-free models 269
14.2.2 Optimisation of the local 7,,, models 270
14.2.3 Optimisation of the diffusion tensor parameters. 270
14.2.4 Optimisation of the global model 271

14.3 Construction of the values, gradients, and Hessians 271
14.3.1 The sum of chi-squared values 271
14.3.2 Construction of the gradient 271
14.3.3 Construction of the Hessian 273

14.4 'The value, gradient, and Hessian dependency chain 273
14.5 The x? value, gradient, and Hessian 275
1451 They?value 275
14.5.2 The x? gradient 275
14.5.3 The xy? Hessianot 275

14.6 The R;(0) values, gradients, and Hessians 276
14.6.1 TheR;(f) values Lo 276
14.6.2 The R;(f) gradients 276
14.6.3 The R;(f) Hessians 276

14.7 R[(0) values, gradients, and Hessians 277
14.7.1 Components of the R}(f) equations 277
14.7.2 Ri@) values 280
14.7.3 Ri(@) gradientso 280
14.74 RL(O) Hessians 281

14.8 Model-free analysis L 285
14.8.1 The model-free equations 285
14.8.2 The original model-free gradient 286
14.8.3 The original model-free Hessian 287
14.8.4 The extended model-free gradient 290
14.8.5 The extended model-free Hessian 292

14.9 Ellipsoidal diffusion tensoro 297

14.9.1 The diffusion equation of the ellipsoid 297

RS CONTENTS

14.9.2 The weights of the ellipsoid 297
14.9.3 The weight gradients of the ellipsoid 298
14.9.4 The weight Hessians of the ellipsoid 300
14.9.5 The correlation times of the ellipsoid 306
14.9.6 The correlation time gradients of the ellipsoid 306
14.9.7 The correlation time Hessians of the ellipsoid 308
14.10 Spheroidal diffusion tensor L. 310
14.10.1 The diffusion equation of the spheroid 310
14.10.2 The weights of the spheroid 310
14.10.3 The weight gradients of the spheroid 311
14.10.4 The weight Hessians of the spheroid 311
14.10.5 The correlation times of the spheroid 312
14.10.6 The correlation time gradients of the spheroid 312
14.10.7 The correlation time Hessians of the spheroid 312
14.11 Spherical diffusion tensor oo 314
14.11.1 The diffusion equation of the sphere 314
14.11.2 The weight of the sphere 314
14.11.3 The weight gradient of the sphere 314
14.11.4 The weight Hessian of the sphere 315
14.11.5 The correlation time of the sphere 315
14.11.6 The correlation time gradient of the sphere 315
14.11.7 The correlation time Hessian of the sphere 315
14.12 Ellipsoidal dot product derivatives 316
14.12.1 The dot product of the ellipsoid 316
14.12.2 The dot product gradient of the ellipsoid 316
14.12.3 The dot product Hessian of the ellipsoid 318
14.13 Spheroidal dot product derivatives 320
14.13.1 The dot product of the spheroid 320
14.13.2 The dot product gradient of the spheroid 320
14.13.3 The dot product Hessian of the spheroid 320

V Reference 323
15 Alphabetical listing of user functions 325
15.1 A warning about the formatting 325
15.2 The list of functions oL 325
15.21 Thesynopsis o o 325
15.2.2 Defaults 325
15.2.3 Docstring sectioningo 326
15.2.4 align_tensor.copyo oo 327
15.2.5 align_tensor.deleteo 328
15.2.6 align_tensor.display oL 328
15.2.7 align_tensorfix Lo 329
15.2.8 align_tensor.inito o oo 329
15.2.9 align_tensor.matrix_angleso 330
15.2.10 align_tensor.reduction 331
15.2.11 align_tensor.set_domain L. 331

15.2.12 align_tensor.svdo Lo 332

CONTENTS

15.2.13
15.2.14
15.2.15
15.2.16
15.2.17
15.2.18
15.2.19
15.2.20
15.2.21
15.2.22
15.2.23
15.2.24
15.2.25
15.2.26
15.2.27
15.2.28
15.2.29
15.2.30
15.2.31
15.2.32
15.2.33
15.2.34
15.2.35
15.2.36
15.2.37
15.2.38
15.2.39
15.2.40
15.2.41
15.2.42
15.2.43
15.2.44
15.2.45
15.2.46
15.2.47
15.2.48
15.2.49
15.2.50
15.2.51
15.2.52
15.2.53
15.2.54
15.2.55
15.2.56
15.2.57
15.2.58
15.2.59
15.2.60
15.2.61

Xi
angles.diff frameo oo 333
bmrb.citation 333
bmrb.display 335
bmrb.read 335
bmrb.scripto 336
bmrb.software 337
bmrb.software_select oL 338
bmrb.thiol_state L0 339
bmrb.write 339
brukerread 340
calc . . e 340
chemical_shiftread L. 341
consistency_tests.set_frqo oL 341
dasha.create 342
dasha.execute. 342
dasha.extract 343
deselect.all 343
deselect.interatom 344
deselect.read L 345
deselect.reverse 346
deselect.spin 347
diffusion_tensor.copyo 347
diffusion_tensor.delete 348
diffusion_tensor.display Lo 348
diffusion_tensor.init 349
domain 352
dx.execute e e 352
dxmap e 353
eliminate 356
AX . e 357
frame_order.average_positiono oo 358
frame_order.num_nt_pts 359
frame_order.pdb_model oL 359
frame_order.pivot 360
frame_order.quad_int Lo 361
frame_order.ref domain 361
frame_order.select_model L. 362
Grace.VIEWo e e 363
grace.write Lo 363
gridsearch Lo L 367
interatom.copyo 367
interatom.define L 368
interatom.read_dist 369
interatom.set_dist oL 370
interatom.unit_vectors 371
jecoupling.copy 371
jocoupling.delete L oL oo 372
jecoupling.display L o 372

jecoupling.read L oo 373

xii

15.2.62
15.2.63
15.2.64
15.2.65
15.2.66
15.2.67
15.2.68
15.2.69
15.2.70
15.2.71
15.2.72
15.2.73
15.2.74
15.2.75
15.2.76
15.2.77
15.2.78
15.2.79
15.2.80
15.2.81
15.2.82
15.2.83
15.2.84
15.2.85
15.2.86
15.2.87
15.2.88
15.2.89
15.2.90
15.2.91
15.2.92
15.2.93
15.2.94
15.2.95
15.2.96
15.2.97
15.2.98
15.2.99
15.2.100
15.2.101
15.2.102
15.2.103
15.2.104
15.2.105
15.2.106
15.2.107
15.2.108
15.2.109
15.2.110

CONTENTS

jcoupling.write oL oL oo 374
jw_omapping.set_frq Lo 374
Minimise e 375
model_free.create_model Lo 379
model_free.delete 380
model_free.remove_tmo 381
model_free.select_model oL 381
model_selection 383
molecule.copy 384
molecule.create 385
molecule.deleteo 386
moleculedisplay Lo 386
moleculename L 387
molecule.typeo 388
molmol.clear_history L o 389
molmol.command 389
molmol.macro_apply L 390
molmol.macro_run 402
molmol.macro_write 403
molmol.ribbon 404
molmol.tensor_pdb 405
molmol.view 406
monte_carlo.create_data, 406
monte_carlo.error_analysis Lo oL 408
monte_carlo.initial_values 409
monte_carlo.off 410
monte_carlo.on 411
monte_carlo.setup Lo 412
n_state_model.CoM 413
n_state_model.cone.pdb oo 414
n_state_model.elim_no_prob L. 415
n_state_model.number_of states 416
n_state_model.ref domain 416
n_state_model.select_model L. 417
noe.read_restraints Lo 417
noe.spectrum_type Lo 418
palmer.create 418
palmer.execute 419
palmer.extract Lo L 420
paramag.centreo 420
pes.back_caleo Lo 421
pes.calc_qfactors 422
PCS.COPY « « v v v v e e e e e e e e e e e 422
pes.corr_plot . ..o Lo 423
pesdelete 423
pesdisplayo Lo 424
pes.read ... L. L e 424
PCS.SEt_errors 425
pes.structuralnoiseo Lo Lo 426

CONTENTS

15.2.111
15.2.112
15.2.113
15.2.114
15.2.115
15.2.116
15.2.117
15.2.118
15.2.119
15.2.120
15.2.121
15.2.122
15.2.123
15.2.124
15.2.125
15.2.126
15.2.127
15.2.128
15.2.129
15.2.130
15.2.131
15.2.132
15.2.133
15.2.134
15.2.135
15.2.136
15.2.137
15.2.138
15.2.139
15.2.140
15.2.141
15.2.142
15.2.143
15.2.144
15.2.145
15.2.146
15.2.147
15.2.148
15.2.149
15.2.150
15.2.151
15.2.152
15.2.153
15.2.154
15.2.155
15.2.156
15.2.157
15.2.158
15.2.159

xiii
pes.weight . . o oL 427
pPCS.Writeo 427
pipebundle 428
pipe.change_type Lo 428
PIPE.COPY « « v v v i e e e e e e 429
pipe.create Lo 429
pipe.current Lo e 430
pipedeleteo L 431
pipedisplay 431
pipe.hybridise 432
pipeswitcho Lo 432
pymol.cartoon Lo 433
pymol.clear_history L L 433
pymol.command Lo 434
pymol.cone.pdb Lo 434
pymol.frame order Lo oo 435
pymol.macro_apply L 435
pymol.macrorun oL 437
pymol.macro_writeo Lo 437
pymol.tensor_.pdb 439
pymol.vector_disto 440
pymol.view 440
rde.backcaleo 441
rdc.calc_qfactorso 441
rdC.COPY « « « v o e 442
rdc.corrplot L 442
rdedelete . . . Lo 443
rdedisplayo 443
rderead Lo 444
rdc.set_errors e e 445
rde.weight . . . o oL o 445
rde.write ... Lo 446
relax_data.backcalc L oo 446
relax_ data.copyo 447
relax_data.delete o 447
relax data.display Lo oo 448
relax_data.peak_intensity_type oL 448
relax data.read 449
relax_data.temp_calibration 450
relax_data.temp_control L. 451
relax_data.type Lo 451
relax_ data.writeo Lo 452
relax_disp.catia_execute L. 452
relax_disp.catia_input Lo 453
relax_disp.cluster 453
relax_disp.cpmgsetup L o 454
relax_disp.cpmgfit_execute 454
relax_disp.cpmgfitinput oL 455

relax_disp.exp_type. 455

Xiv

15.2.160
15.2.161
15.2.162
15.2.163
15.2.164
15.2.165
15.2.166
15.2.167
15.2.168
15.2.169
15.2.170
15.2.171
15.2.172
15.2.173
15.2.174
15.2.175
15.2.176
15.2.177
15.2.178
15.2.179
15.2.180
15.2.181
15.2.182
15.2.183
15.2.184
15.2.185
15.2.186
15.2.187
15.2.188
15.2.189
15.2.190
15.2.191
15.2.192
15.2.193
15.2.194
15.2.195
15.2.196
15.2.197
15.2.198
15.2.199
15.2.200
15.2.201
15.2.202
15.2.203
15.2.204
15.2.205
15.2.206
15.2.207
15.2.208

CONTENTS

relax_disp.insignificance oL oL oL 456
relax_disp.nessy_input Lo Lo 457
relax_disp.parameter_.copy 457
relax_disp.plot_disp_curves 458
relax_disp.plot_exp_curves 458
relax_disp.r2effread oo 459
relax_disp.r2eff read_spin L. 460
relax_disp.relax_time Lo Lo oL 460
relax_disp.select_model L L. 461
relax_disp.set_grid_r20_from min r2eff 463
relax_disp.sherekhan_input 463
relax_disp.spin_ock_field oo L. 464
relax_disp.spin_lock offseto 0oL 464
relax_disp.write_disp_curves L. 465
relax_fit.relax_time Lo 465
relax_fit.select_model oL 466
reset L 466
residue.copy oo 467
residue.create L. 467
residue.delete 468
residuedisplay Lo Lo 468
residue.name L Lo e 469
residue.number Lo 470
results.displayo oL 471
resultsread Lo 471
results.write oL 472
SCTipt . . . 472
select.all 473
select.domain 473
select.interatom Lo 474
select.read L 475
select.reverse 476
select.spin. oL 477
sequence.attach_protons L. 477
SEQUENCE.COPY + v o v v e e e e e e e e e e e 478
sequence.display 478
sequence.read L. oL oL 479
sequence.write Lo oL Lo 480
spectrometer.frequency L 480
spectrometer.temperature L. Lo 481
spectrum.baseplane.rmsd 481
spectrum.delete L 482
spectrum.error_analysis L L oL 482
spectrum.integration_points 484
spectrum.read_intensities 485
spectrum.read_spins L. Lo 486
spectrum.replicated L L 487
SPIN.COPY « « v v v v e e e e e e 488
spin.create L L Lo 488

CONTENTS XV
15.2.209 spin.create_pseudo o 489
15.2.210 spin.deleteo Lo 490
15.2.211 spindisplayo 490
15.2.212 spin.element Lo Lo oL 491
15.2.213 spin.sotopeo 492
15.2.214 spinnameo Lo e e 493
15.2.215 spin.number Lo 494
15.2.216 statedoad 495
15.2.217 state.save L. Lo 495
15.2.218 structure.add_atom 496
15.2.219 structure.add_modelo 497
15.2.220 structure.connect_atom oL, 497
15.2.221 structure.create_diff tensor_pdbo, 498
15.2.222 structure.create_rotor_pdbo oL 499
15.2.223 structure.create_vector_dist L. 500
15.2.224 structure.delete L o 500
15.2.225 structure.displacemento 501
15.2.226 structure.find_pivot Lo 502
15.2.227 structure.get_poso 502
15.2.228 structure.load_spins oo 503
15.2.229 structure.read_gaussian L0000 504
15.2.230 structure.read_pdb oo 505
15.2.231 structureread xyz Lo Lo 506
15.2.232 structure.rmsd Lo 507
15.2.233 structure.rotateo oL 508
15.2.234 structure.superimposeo oo 508
15.2.235 structure.translateo Lo 509
15.2.236 structure.web_of_motion L. 510
15.2.237 structure.write_pdb Lo o 510
15.2.238 sysiinfo 511
15.2.239 wvalue.copy e 512
15.2.240 value.display L 515
15.2.241 valueread 516
15.2.242 value.set 518
15.2.243 value.write L 522
15.2.244 vid.view L 523

16 Licence 525

16.1 Copying, modification, sublicencing, and distribution of relax 525

16.2 The GPL o .. 0 925

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

5.1

6.1

7.1
7.2
7.3

9.1

11.1

12.1

14.1
14.2
14.3

Prompt screenshot 7
Scripting screenshoto 8
GUI screenshot 10
GUI screenshot — Analysis wizard screenshot 12
GUI screenshot — NOE analysis 15
GUI screenshot — Ry analysis L. 16
GUI screenshot — Rg analysis o L. 17
GUI screenshot — Model-free analysis 18
relax controller screenshot oL 19
Spin viewer window screenshot L. 20
Results viewer window screenshot 21
Pipe editor window screenshot 21
Prompt window screenshot L L. 22
Peak intensity 2D plot xmgrace screenshot 68
NOE plot e 74
A schematic of the model-free optimisation protocol of Mandel et al., 1995 97
Model-free analysis using the diffusion seeded paradigm 98
A schematic of the new model-free optimisation protocol 102
Example of consistency testing visual analysis 137
Comparison of relaxation dispersion errors 155
The core design of relax. L L 247
The construction of the model-free gradient. 272
The model-free Hessian kite. 274
x? dependencies of the values, gradients, and Hessians. 275

xXVi

List of Tables

5.1

11.1
11.1
11.2
11.2
11.3
11.3

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21
15.22
15.23
15.23
15.23
15.23
15.23
15.23
15.23
15.23
15.23
15.24

Summary, First Point Scaling and Phase Correction 51
The dispersion models. 150
The dispersion models. Lo o 151
The parameters of relaxation dispersion. 152
The parameters of relaxation dispersion. 153
Dispersion software comparison. 193
Dispersion software comparison. o0 194
Boolean operators and their effects on selections 345
OpenDx mapping types.o 354
Model-free parameters. L. 354
N-state model parameters.o 354
Relaxation dispersion parameters. 355
Frame order parameters. Lo Lo 355
Relaxation curve fitting parameters and minimisation statistics. 365
Steady-state NOE parameters. 365
Model-free parameters and minimisation statistics. 365
Reduced spectral density mapping parameters. 365
Consistency testing parameters. L Lo 366
Relaxation dispersion parameters and minimisation statistics. 366
Minimisation algorithms — unconstrained line search methods. 376
Minimisation algorithms — unconstrained trust-region methods. 376
Minimisation algorithms — unconstrained conjugate gradient methods. . . 376
Minimisation algorithms — miscellaneous unconstrained methods. 378
Minimisation algorithms — global minimisation methods. 378
Minimisation sub-algorithms — line search algorithms. 378
Minimisation sub-algorithms — Hessian modifications. 378
Minimisation sub-algorithms — Hessian type. 378
The model-free classic style for PyMOL and Molmol data mapping. . . . 391
Molmol colour names and corresponding RGB colour values (from 0 to 1) 392
X11 colour names and corresponding RGB colour values 393
X11 colour names and corresponding RGB colour values 394
X11 colour names and corresponding RGB colour values 395
X11 colour names and corresponding RGB colour values 396
X11 colour names and corresponding RGB colour values 397
X11 colour names and corresponding RGB colour values 398
X11 colour names and corresponding RGB colour values 399
X11 colour names and corresponding RGB colour values 400
X11 colour names and corresponding RGB colour values 401
The six peak intensity error analysis types. 483

xXvii

xviil

15.25
15.26
15.27
15.28
15.29
15.30
15.31
15.32
15.33
15.34
15.35
15.36
15.37
15.38
15.39
15.40

LIST OF TABLES

Diffusion tensor PDB scaling. 499
Relaxation curve fitting parameters. 513
Model-free parameters. 513
Reduced spectral density mapping parameters. 513
Consistency testing parameters. 513
N-state model parameters. Lo 513
Relaxation dispersion parameters. 514
Relaxation curve fitting parameters. 516
Model-free parameters. 516
The value and parameter combinations for the value.set user function. . . 519
Relaxation curve fitting parameter value setting. 519
Model-free parameter value setting. 519
Reduced spectral density mapping parameter value setting. 519
Consistency testing parameter value setting. 520
N-state model parameter value setting. 520

Relaxation dispersion parameter value setting. 520

Abbreviations

AIC: Akaike’s Information Criteria (model selection method)
AICc: small sample size corrected AIC (model selection method)
API: application programming interface

ANOVA: analysis of variance (field of statistics)

BC: back calculation

BIC: Bayesian Information Criteria (model selection method)
BFGS: Broyden-Fletcher-Goldfarb-Shanno (optimisation method)
C(7): correlation function

x?: chi-squared function

CG: conjugate gradient (optimisation)

CPMG: the Carr-Purcell-Meiboom-Gill pulse sequence

CR72: the Carver and Richards (1972) relaxation dispersion model
CSA: chemical shift anisotropy

CV: cross validation

CVS: Concurrent Versions System (open source version control system)
©: the set of diffusion tensor parameters

D,: the eigenvalue of the spheroid diffusion tensor corresponding to the unique axis of the
tensor

©,: the eigenvalue of the spheroid diffusion tensor corresponding to the two axes perpen-
dicular to the unique axis

©,: the anisotropic component of the Brownian rotational diffusion tensor

Dis0t the isotropic component of the Brownian rotational diffusion tensor

©,: the rhombic component of the Brownian rotational diffusion tensor

Dratio: the ratio of D to D,

©,: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding

eigenvector defines the x-axis of the tensor

Xix

XX LIST OF TABLES

Dy: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding
eigenvector defines the y-axis of the tensor

©,: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding
eigenvector defines the z-axis of the tensor

DPL94: the Davis et al. (1994) relaxation dispersion model
DQ: double quantum

€;: elimination value

FSF': Free Software Foundation

GNU: GNU’s Not Unix!

GPG: GNU Privacy Guard (software)

GPL: GNU general public licence

GUI: graphical user interface

ID string: identification string

IT99: the Ishima and Torchia (1999) relaxation dispersion model
J(w): spectral density function

LM63: the Luz and Meiboom (1963) relaxation dispersion model
M61: the Meiboom (1961) relaxation dispersion model

MC: Monte Carlo (simulations)

MD: molecular dynamics (simulations)

MMQ: proton-heteronuclear SQ, ZQ, DQ, and MQ data (multi-multiple quantum)
MPO5: the Miloushev and Palmer (2005) relaxation dispersion model
MPI: message passing interface

MQ: multiple quantum

NMR: if you do not know this one, do not read further

NNTP: network news transfer protocol

NOE: nuclear Overhauser effect

NS: numeric solution

ORD: optical rotatory dispersion

OS: operating system

PCS: pseudocontact shift

PDB: Protein Data Bank

LIST OF TABLES

pdf: probability distribution function

PRE: paramagnetic relaxation enhancement

r: bond length

R;: spin-lattice relaxation rate

Ro: spin-spin relaxation rate

Re.: chemical exchange relaxation rate

RDC: residual dipolar coupling

RMSD: root-mean-square deviation

ROE: rotating-frame Overhauser effect

RSDM: reduced spectral density mapping

RSS: rich site summary (web feed format)

S2, SJ%, and S?: model-free generalised order parameters

SVN: Apache Subversion (open source version control system)
Tes Tty and 741 model-free effective internal correlation times
Tmt global rotational correlation time

TPO02: the Trott and Palmer (2002) relaxation dispersion model
TAPO3: the Trott et al. (2003) relaxation dispersion model
TSMFKO1: the Tollinger et al. (2001) relaxation dispersion model
UI: user interface

XML: extensible markup language

ZQ: zero quantum

xxi

xxii LIST OF TABLES

Preface - citing relax

The relax project is a large collection of work created by diverse authors. It is a community
driven project created by NMR spectroscopists which supports a broad range of dynamics
analyses. Care must be taken to properly cite the parts of relax that you use so that the
correct authors receive the citations and credit they deserve. The following is a breakdown
of all of the citations relating to relax, including the basic citations for the various analysis

types.

The software relax

relax references

The primary citations for relax are:

e d’Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic
models I. Minimisation algorithms and their performance within the model-free
and Brownian rotational diffusion spaces. J. Biomol. NMR, 40(2), 107-119.
(10.1007/s10858-007-9214-2)

e d’Auvergne, E. J. and Gooley, P. R. (2008¢c). Optimisation of NMR dynamic mod-
els II. A new methodology for the dual optimisation of the model-free parameters
and the Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121-133.
(10.1007/s10858-007-9213-3)

If space is at a premium, the standard rules for concatenating back-to-back papers can be
used:

e d’Auvergne, E. J. and Gooley, P. R. (2008a). Optimisation of NMR dynamic models.
J. Biomol. NMR, 40(2), 107-133

Graphical user interface reference

The primary citation for the GUI is:
e Bieri, M., d’Auvergne, E., and Gooley, P. (2011). relaxGUI: a new software for fast

and simple NMR relaxation data analysis and calculation of ps-ns and ps motion of
proteins. J. Biomol. NMR, 50, 147-155. (10.1007/s10858-011-9509-1)

xx1ii

http://dx.doi.org/10.1007/s10858-007-9214-2
http://dx.doi.org/10.1007/s10858-007-9213-3
http://dx.doi.org/10.1007/s10858-011-9509-1

XXiv PREFACE - CITING RELAX

The multi-processor reference

Although not published, if the multi-processor framework is used to run relax on multi-
core systems, grids, or clusters, then please acknowledge the author of that code — Gary
Thompson.

Specific analyses

The following subsections list the citations for the individual analysis specific parts of
relax.

Model-free analysis references

If the automated analysis of the dauvergne protocol.py sample script or the GUI model-
free analysis which uses the same protocol has been used, then the following citations are
all implicit:

e d’Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in
the model-free analysis of protein dynamics. J. Biomol. NMR, 25(1), 25-39.
(10.1023/a:1021902006114)

e d’Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new
step in the model-free dynamic analysis of NMR relaxation data. J. Biomol. NMR,
35(2), 117-135. (10.1007/s10858-006-9007-z)

e d’Auvergne, E. J. and Gooley, P. R. (2007). Set theory formulation of the model-free
problem and the diffusion seeded model-free paradigm. Mol. BioSyst., 3(7), 483-494.
(10.1039/b702202f)

e d’Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic
models I. Minimisation algorithms and their performance within the model-free
and Brownian rotational diffusion spaces. J. Biomol. NMR, 40(2), 107-119.
(10.1007/s10858-007-9214-2)

e d’Auvergne, E. J. and Gooley, P. R. (2008c). Optimisation of NMR dynamic mod-
els II. A new methodology for the dual optimisation of the model-free parameters
and the Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121-133.
(10.1007/s10858-007-9213-3)

Otherwise, if model-free analysis is used in relax but not via the inbuilt automated protocol,
the first reference is for model selection, the second is for eliminating failed model-free
models, and the forth is for the optimisation improvements (the third and fifth are for the
automated protocol). All of the model-free implementation details of relax are covered by
the PhD thesis (available as a PDF or as a printed version on Amazon.com) of:

e d’Auvergne, E. J. (2006). Protein dynamics: a study of the model-free analysis of
NMR relaxation data. PhD thesis, Biochemistry and Molecular Biology, University of
Melbourne. http://eprints.infodiv.unimelb.edu.au/archive/00002799/. (10187/2281)

http://dx.doi.org/10.1023/a:1021902006114
http://dx.doi.org/10.1007/s10858-006-9007-z
http://dx.doi.org/10.1039/b702202f
http://dx.doi.org/10.1007/s10858-007-9214-2
http://dx.doi.org/10.1007/s10858-007-9213-3
http://dx.doi.org/10187/2281

XXV

The reference for the hybridisation of different global diffusion models to analyse the
residual inter-domain dynamics — a not very well documented feature of relax — is:

e Horne, J., d’Auvergne, E., Coles, M., Velkov, T., Chin, Y., Charman, W., Prankerd,
R., Gooley, P., and Scanlon, M. (2007). Probing the flexibility of the DsbA oxi-
doreductase from Vibrio cholerae—a 15N - 1H heteronuclear NMR relaxation anal-
ysis of oxidized and reduced forms of DsbA. J. Mol. Biol., 371(3), 703-716.
(10.1016/j.jmb.2007.05.067)

The base citations for model-free theory are Lipari and Szabo (1982a,b); Clore et al.
(1990).

Consistency testing analysis references

The first is the main citation, whereas the next are the individual tests. The citation for
the consistency testing of NMR relaxation as implemented in relax is:

e Morin, S. and Gagné, S. (2009a). Simple tests for the validation of multiple field
spin relaxation data. J. Biomol. NMR, 45, 361-372. (10.1007/s10858-009-9381-4)

The base citations for the consistency testing of NMR relaxation are Fushman et al. (1999);
Farrow et al. (1995); Fushman et al. (1998)

N-state model analysis references

Some citations demonstrating as well as presenting the use of the N-state model for diverse
analyses types are:

e Sun, H., d’Auvergne, E. J., Reinscheid, U. M., Dias, L. C., Andrade, C. K. Z.,
Rocha, R. O., and Griesinger, C. (2011). Bijvoet in solution reveals unex-
pected stereoselectivity in a michael addition. Chem. Eur. J., 17(6), 1811-1817.
(10.1002/chem.201002520)

e Erdelyi, M., d’Auvergne, E., Navarro-Vazquez, A., Leonov, A., and Griesinger, C.
(2011). Dynamics of the glycosidic bond: Conformational space of lactose. Chem.
Eur. J., 17(34), 9368-9376. (10.1002/chem.201100854)

Reduced spectral density mapping references

The base citations for reduced spectral density mapping are Farrow et al. (1995);
Lefevre et al. (1996).

http://dx.doi.org/10.1016/j.jmb.2007.05.067
http://dx.doi.org/10.1007/s10858-009-9381-4
http://dx.doi.org/10.1002/chem.201002520
http://dx.doi.org/10.1002/chem.201100854

XXVi PREFACE - CITING RELAX

Relaxation dispersion references

For the base citations for relaxation dispersion, please see chapter 11 on page 145 for a
listing of the individual models. The main citation is:

e Morin, S., Linnet, T. E., Lescanne, M., Schanda, P., Thompson, G. S., Tollinger, M.,
Teilum, K., Gagné, S., Marion, D., Griesinger, C., Blackledge, M., and d’Auvergne,
E. J. (2014). relax: the analysis of biomolecular kinetics and thermodynamics using
NMR relaxation dispersion data. Bioinformatics. (10.1093/bioinformatics/btul66)

Generic parts of relax

The following subsections will list the citations for the parts of relax independent of the
specific analyses.

Model selection references

The citation for the model selection component of relax is:

e d’Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in
the model-free analysis of protein dynamics. J. Biomol. NMR, 25(1), 25-39.
(10.1023/a:1021902006114)

The base citations for the specific model selection techniques of AIC, AICc, and BIC are
respectively Akaike (1973); Hurvich and Tsai (1989); Schwarz (1978)

o Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. In: Petrov, B. N. and Csaki, F. (eds.): Proceedings of the Second Inter-
national Symposium on Information Theory. Budapest, pages 267-281, Akademia
Kiado

e Hurvich, C. M. and Tsai, C. L. (1989). Regression and time-series model selection
in small samples. Biometrika, 76(2), 297-307. (10.1093/biomet/76.2.297)

e Schwarz, G. (1978). Estimating dimension of a model. Ann. Stat., 6(2), 461-464.
(10.1214/a0s/1176344136)

Other citations

If you believe that other citations should be included in this chapter, please contact the
relax users mailing list (relax-users at gna.org).

http://dx.doi.org/10.1093/bioinformatics/btu166
http://dx.doi.org/10.1023/a:1021902006114
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1214/aos/1176344136

Part 1

The basics

Chapter 1

Introduction

The program relax is designed for the study of molecular dynamics through the analysis
of experimental NMR data. Organic molecules, proteins, RNA, DNA, sugars, and other
biomolecules are all supported. It was originally written for the model-free analysis of
protein dynamics, though its scope has been significantly expanded. It is a community
driven project created by NMR spectroscopists for NMR spectroscopists. It supports many
analysis types including:

Model-free analysis - the Lipari and Szabo model-free analysis of NMR relaxation data

R; and Ry - the exponential curve fitting for the calculation of the R, NMR relaxation
rates.

NOE - the calculation of the steady-state NOE NMR relaxation data.
Data consistency - the consistency testing of multiple field NMR relaxation data.

RSDM - Reduced Spectral Density Mapping.

Frame order and N-state model - study of domain motions via the N-state model and
frame order dynamics theories using anisotropic NMR parameters such as RDCs and
PCSs.

Stereochemistry - investigations of absolute stereochemistry of flexible molecules.

Relaxation dispersion - the study of processes on the chemical exchange timescale.

The aim of relax is to provide a seamless and extremely flexible environment able to accept
input in any format produced by other NMR software, able to faultlessly create input files,
control, and read output from various programs including Modelfree and Dasha, output
results in many formats, and visualise the data by controlling programs such as Grace,
OpenDX, MOLMOL, and PyMOL. All data analysis tools from optimisation to model
selection to Monte Carlo simulations are inbuilt into relax. Therefore the use of additional
programs is optional.

The flexibility of relax arises from the choice of relax’s scripting capabilities, its Python
prompt interface, or its graphical user interface (GUI). Extremely complex scripts can be

4 CHAPTER 1. INTRODUCTION

created from simple building blocks to fully automate data analysis. A number of sample
scripts have been provided to help understand script construction. In addition, any of
Python’s powerful features or functions can be incorporated as the script is executed as
an arbitrary Python source file within relax’s environment. The modules of relax can also
used as a vast library of dynamics related functions by your own software.

relax is free software (free as in freedom) which is licenced under the GNU General Public
Licence (GPL). You are free to copy, modify, or redistribute relax under the terms of the
GPL.

1.1 Program features

1.1.1 Literature

The primary references for the program relax are d’Auvergne and Gooley (2008b) and
d’Auvergne and Gooley (2008c). To properly cite the various parts of relax used in your
analysis, please see Chapter on page xxiii.

1.1.2 Supported NMR theories
The following relaxation data analysis techniques are currently supported by relax:

e Model-free analysis (Lipari and Szabo (1982a,b); Clore et al. (1990) and the spe-
cific implementation of d’Auvergne and Gooley (2003, 2006, 2007, 2008b,c)). This
includes the hybridisation of global diffusion models to study residual domain dy-
namics (Horne et al., 2007).

e Reduced spectral density mapping (Farrow et al., 1995; Lefevre et al., 1996).

e Consistency testing — the validation of multiple field NMR relaxation data (Morin and Gagné,
2009a; Fushman et al., 1999).

e Exponential curve fitting (to find the R; and Ry relaxation rates).
e Steady-state NOE calculation.

e Determination of absolute stereochemistry of flexible molecules via the N-state model
using isotropic and anisotropic NMR parameters such as NOE, ROE, and RDC
combined with MD simulation or simulated annealing, and ORD (Sun et al., 2011).

e The N-state model for investigating domain motions.
e The frame order theory.

e Conformational analysis of paramagnetically tagged molecules via the N-state model
(Erdelyi et al., 2011).

e Analysis and comparison of ensembles of structures using RDCs, PCSs, NOEs, etc.
(the N-state model of dynamics).

e The analysis of relaxation dispersion.

1.1. PROGRAM FEATURES 5

The future

Because relax is free software, if you would like to contribute addition features, functions,
or modules which you have written for your own publications for the benefit of the field,
almost anything relating to molecular dynamics may be accepted. Please see the Open
Source chapter on page 29 for more details.

1.1.3 Data analysis tools

The following tools are implemented as modular components to be used by any data
analysis technique:

e Numerous high-precision optimisation algorithms.

e Model selection (d’Auvergne and Gooley, 2003; Chen et al., 2004):

— Akaike’s Information Criteria (AIC).
— Small sample size corrected AIC (AICc).

— Bayesian or Schwarz Information Criteria (BIC).

Bootstrap model selection.

— Single-item-out cross-validation (CV).

Hypothesis testing ANOVA model selection (only the model-free specific tech-
nique of Mandel et al. (1995) is supported).

e Monte Carlo simulations (error analysis for all data analysis techniques).

e Model elimination — the removal of failed models prior to model selection (d’Auvergne and Gooley,
2006).

1.1.4 Data visualisation

The results of an analysis, or any data input into relax, can be visualised using a number
of programs:

MOLMOL 1D data can be mapped onto a structure either by the creation of MOLMOL
macros or by direct control of the program.

PyMOL 3D objects such as the diffusion tensor representation can be displayed with the
structure.

Grace any 2D data can be plotted.

OpenDX The chi-squared space of models with three parameters can be mapped and 3D
images of the space produced.

6 CHAPTER 1. INTRODUCTION

1.1.5 Interfacing with other programs

relax can create the input files, execute in-line, and then read the output of the following
programs. These programs can be used as optimisation engines replacing the minimisation
algorithms built into relax:

e Dasha (model-free analysis).

e Modelfree (model-free analysis).

1.1.6 The user interfaces (UI)

relax can be used through the following Uls:

The prompt this is the primary interface of relax. Rather than reinventing a new com-
mand language, relax’s interface is the powerful Python prompt. This gives the
power user full access to a proven programming language. See Figure 1.1 for a
screenshot.

Scripting this provides a more powerful and flexible framework for controlling the pro-
gram. The script will be executed as Python code enabling advanced programming
for automating data analysis. All the features available within the prompt environ-
ment are accessible to the script. See Figure 1.2 for a screenshot.

GUI the graphical user interface provides a sub-set of relax’s features - the automatic R;
and Ry relaxation rate curve-fitting, the NOE calculations, and the automatic model-
free analysis provided by the dauvergne protocol module (d’Auvergne and Gooley,
2008c). See Figure 1.3 for a screenshot.

1.2 How to use relax

1.2.1 The prompt

The primary interface of relax is the prompt. After typing “relax” within a terminal you
will be presented with

relax>

This is the Python prompt which has been tailored specifically for relax. You will hence
have full access, if desired, to the power of the Python programming language to manip-
ulate your data. You can for instance type

relax> print("Hello World")

the result being

relax> print("Hello World")
Hello World
relax>

1.2. HOW TO USE RELAX 7

(] 2.1.1: python - X

File Edit View Scrollback Bookmarks Settings Help

t1
r the

in using the r ot and s can be ng 'help' within

t

Current

= 2.11 : python =

Figure 1.1: A screenshot of relax being run in the primary prompt mode.

Or using relax as a calculator

relax> (1.0 + (2 * 3))/10
0.69999999999999996
relax>

1.2.2 Python

relax has been designed such that knowledge about Python is not required to be able to
fully use the program. A few basics though will aid in understanding relax.

A number of simple programming axioms includes that of strings, integers, floating point
numbers, and lists. A string is text and within Python (as well as relax) this is delimited
by either single or double quotes. An integer is a number with no decimal point whereas
a float is a number with a decimal point. A list in Python (called an array in other
languages) is a list of anything separated by commas and delimited by square brackets,
an example is [0, 1, 2, ‘a’, 1.2143235].

Probably the most important detail is that functions in Python require brackets around
their arguments. For example

relax> minimise ()

will commence minimisation however

relax> minimise

8 CHAPTER 1. INTRODUCTION

=] 1.3.15: python =8 X
File Edit view Bookmark Settings Help

0, angle_units='deg

L @135 : python %

Figure 1.2: A screenshot of relax being run in scripting mode.

will do nothing.

The arguments to a function are simply a comma separated list within the brackets of the
function. For example to save the program’s current state type

relax> state.save('save',6 force=True)

Two types of arguments exist in Python — standard arguments and keyword arguments.
The majority of arguments you will encounter within relax are keyword arguments however
you may, in rare cases, encounter a non-keyword argument. For these standard arguments
just type the values in, although they must be in the correct order. Keyword arguments
consist of two parts — the key and the value. For example the key may be file and
the value you would like to supply is “R1.out”. Various methods exist for supplying
this argument. Firstly you could simply type “R1l.out” into the correct position in the
argument list. Secondly you can type file=‘Rl.out’. The power of this second option
is that argument order is unimportant. Therefore if you would like to change the default
value of the very last argument, you don’t have to supply values for all other arguments.
The only catch is that standard arguments must come before the keyword arguments.

1.2.3 User functions

For standard data analysis a large number of specially tailored functions called “user
functions” have been implemented. These are accessible from the relax prompt by simply
typing the name of the function. An example is help(). An alphabetical listing of all
accessible user functions together with full descriptions is presented later in this manual.

1.2. HOW TO USE RELAX 9

A few special objects which are available within the prompt are not actually functions.
These objects do not require brackets at their end for them to function. For example to
exit relax type

relax> exit

Another special object is that of the function class. This object is simply a container
which holds a number of user functions. You can access the user function within the class
by typing the name of the class, then a dot “.”, followed by the name of the user function.
An example is the user function for reading relaxation data out of a file and loading the
data into relax. The function is called “read” and the class is called “relax_data”. To
execute the function, type something like

relax> relax_data.read(ri_id='R1_600', ri_type='R1', £frq=600.0%*1e6, file='r1.600.out',
res_num_col=1, data_col=3, error_col=4)

On first usage the relax prompt can be quite daunting. Two features exist to increase the
usability of the prompt — the help system and tab completion.

1.2.4 The help system

For assistance in using a function simply type

relax> help(function)

In addition to functions if

relax> help(object)

is typed the help for the python object is returned. This system is similar to the help
function built into the python interpreter, which has been renamed to help_python, with
the interactive component removed. For the standard interactive python help system type

relax> help_python ()

1.2.5 Tab completion

Tab completion is implemented to prevent insanity as the function names can be quite
long — a deliberate feature to improve usability. The behaviour of the tab completion is
very similar to that of the bash prompt.

Not only is tab completion useful for preventing RSI but it can also be used for listing all
available functions. To begin with if you hit the [TAB] key without typing any text all
available functions will be listed (along with function classes and other python objects).
This extends to the exploration of user functions within a function class. For example to
list the user functions within the function class model_free type

relax> model_free.

The dot character at the end is essential. After hitting the [TAB] key you should see
something like

10

File View Userfunctions Tools Help

9°Q WHE 7 & .l =

(C) 2001-2011 the relax development team

relax1.3.14

CHAPTER 1. INTRODUCTION

-3 X

Current data pipe:

Figure 1.3: Screenshot of the relax GUI interface — the starting interface. To start one of
the automated analyses, either the menu “File—New analysis” or the new analysis button

in the toolbar should be selected.

relax| model_free.

model_free

model_free.
model_free.
model_free.
model_free.
model_free.
model_free.
model_free.
model_free.
model_free.

.__class__
__doc__
__init
__module__
__relax__
__relax_help__
create_model
delete
remove_tm
select_model

relax> model_free.

All the objects beginning with an underscore are “hidden”, they contain information about
the function class and should be ignored. From the listing the user functions copy, create.
model, delete, remove_tm, and select_model contained within model_free are all visible.

1.2.6 The data pipe

Within relax all user functions operate on data stored within the current data pipe. This
pipe stores data is input, processed, or output as user functions are called. There are
different types of data pipe for different analyses, e.g. a reduced spectral density mapping
pipe, a model-free pipe, an exponential curve-fitting pipe, etc. Multiple data pipes can be
created within relax and various operations performed in sequence on these pipes. This is
useful for operations such as model selection whereby the function model_selection can

1.2. HOW TO USE RELAX 11

operate on a number of pipes corresponding to different models and then assign the results
to a newly created pipe. When running relax you choose which pipe you are currently in
by using the pipe.switch user function to jump between pipes.

The flow of data through relax can be thought of as travelling through these pipes. User
functions exist to transfer data between these pipes and other functions combine data
from multiple pipes into one or vice versa. The simplest invocation of relax would be the
creation of a single data pipe and with the data being processed as it is passing through
this pipe.

The primary method for creating a data pipe is through the user function pipe.create.
For example

relax> pipe.create('ml', 'mf')

will create a model-free data pipe labelled “m1”. The following is a table of all the types
which can be assigned to a data pipe.

Data pipe type Description

“ct” Consistency testing of relaxation data

“frame order” The Frame Order analyses of domain motions
“Ju” Reduced spectral density mapping

“hybrid” A special hybridised data pipe

“mf” Model-free data analysis

“N-state” N-state model of domain motions

“noe” Steady state NOE calculation

“relax fit” Relaxation curve-fitting

1.2.7 The spin and interatomic data containers

Any data which is not considered global for the molecule, such as diffusion tensors, align-
ment tensors, global minimisation statistics, etc., are stored within two special structures
of the data pipes. Any NMR data or information which is specific to an isolated spin
system is stored within special spin containers. This includes for example relaxation data,
CSA information, nuclear isotope type, chemical element type, model-free parameters, re-
duced spectral density mapping values, spin specific minimisation statistics and PCS data.
NMR data or information which is defined as being between two spin systems, such as
the magnetic dipole-dipole interaction involved in both NMR relaxation and RDC data,
interatomic vectors and NOESY data, is stored within the interatomic data containers.
The spin and interatomic data containers and their associated data can be manipulated
using a multitude of the relax user functions.

1.2.8 Scripting

What ever is done within the prompt is also accessible through scripting (Figure 1.2).
First type your commands into a text file ending in *.py. To use this mode of relax, you
will need to open up a terminal in your respective operating system:

12 CHAPTER 1. INTRODUCTION

- Analysis selection wizard RS

Start a new analysis

A number of automatic analyses to be preformed using relax in GUI mode. Although not as flexible or powerful as
the prompt/scripting modes, this provides a quick and easy setup and execution for a number of analysis types.
These currently include the calculation of the steady-state NOE, the exponential curve-fitting for the R. and Rz

~ relaxation rates, and for a full and automatic model-free analysis using the d'Auvergne and Geooley, 2008b protocol.
All analyses perform error propagation using the gold standard Monte Calro simulations. Please select from one of
the following analysis types:

The name of the new analysis:

@ Cancel

Figure 1.4: Screenshot of the relax GUI interface — the analysis selection wizard. From
here, the steady-state NOE analysis, the R; and Ro relaxation rates via exponential curve-
fitting, and the automated model-free analysis can be selected.

GNU/Linux: Here you have an incredible number of choices. If you don’t have a pre-
ferred shell already, you could try one of Konsole, GNOME Terminal or even XTerm
if you are a masochist.

Mac OS X: This is as simple as in GNU/Linux — just launch Terminal.app from the
Utilities folder.

MS Windows: If your system supports it, you should install and use Windows PowerShell.
The alternative is the nasty cmd command line terminal program which comes in-
stalled by default on all Windows versions. The PowerShell, although no where
near as powerful as the Linux and Mac terminals, is a huge improvement on the
ancient cmd program and will make relax much better to use on MS Windows.

Once your terminal is running, go to the directory containing your script using the cd
command (if you do not know what this is, please see the documentation for your terminal
program to understand some of its basic usage). Once you are in the correct directory,
within the terminal type:

$ relax your_script.py
You will need to replace your_script.py with the name of your script. In most cases

you would probably like to keep a log of all of the messages, warnings and errors relax
produces for future reference. To active logging within relax, type:

$ relax --log log your_script.py
This will place all output (both STDOUT and STDERR) into the log file (you can choose

any name for this log file). Alternatively you can both log the output and simultaneously
see the messages in your terminal by typing:

1.2. HOW TO USE RELAX 13

$ relax --tee log your_script.py

These command line arguments could be replaced by 10 redirection if this is a familiar
concept to you, but note that these arguments are active also in the GUI mode whereby
IO redirection in the terminal will have no effect. An example of a simple script which
will minimise the model-free model “m4” after loading six relaxation data sets is

Create the data pipe.
name = 'm4'
pipe.create(name, 'mf')

Load the PDB file.
structure.read_pdb('1£3y.pdb')

Set up the 15N and 1H spins.
structure.load_spins ('@N', ave_pos=True)
structure.load_spins ('@H', ave_pos=True)
spin.isotope('15N', spin_id='G@N"')
spin.isotope('1H', spin_id='@H')

Load the relaxation data.

relax_data.read(ri_id='R1_600', ri_type='R1l', £frq=600.0%*1e6, file='r1.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id='R2_600', ri_type='R2', £frq=600.0%*1e6, file='r2.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='NOE_600", ri_type='NOE', frq=600.0*1e6, file='noe.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id='R1_500', ri_type='R1', £frq=500.0%*1e6, file='r1.500.out"',
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id='R2_500', ri_type='R2', £frq=500.0%*1e6, file='r2.500.out"',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='NOE_500", ri_type='NOE', frq=500.0*1e6, file='noe.500.out',
res_num_col=1, data_col=3, error_col=4)

Initialise the diffusion tensor.
diffusion_tensor.init ((2e-8, 1.3, 60, 290), spheroid_type='prolate', param_types=2, fixed=
True)

Create all attached protons.
sequence.attach_protons ()

Define the magnetic dipole-dipole relaxation interaction.
interatom.define (spin_id1='@N', spin_id2='@H', direct_bond=True)
interatom.set_dist(spin_id1='©N', spin_id2='G@H', ave_dist=1.02 * 1e-10)
interatom.unit_vectors ()

Define the CSA relaxation interaction.
value.set (-172 * 1le-6, 'csa')

Select a preset model-free model.
model_free.select_model (model=name)

Grid search.
grid_search(inc=11)

Minimise.
minimise('newton')

Finish.
results.write(file='results', force=True)

14 CHAPTER 1. INTRODUCTION

state.save('save', force=True)

Scripting is much more powerful than the prompt as advanced Python programming can
be employed (see the file relax_curve diff.py in the sample_scripts directory for an
example).

Sample scripts

A few sample scripts have been provided in the directory sample_scripts. These can be
copied and modified for different types of data analysis.

1.2.9 The test suite

To test that the program functions correctly, relax possesses an inbuilt test suite. The
suite is a collection of simple tests which execute or probe different parts of the program
checking that the software runs without problem. The test suite is executed by running
relax using the command

$ relax --test-suite

Alternatively the three components of the test suite — system tests, unit tests, and GUI
tests — can be run separately with
$ relax --system-tests

$ relax --unit-tests

$ relax --gui-tests

1.2.10 The GUI

If the wxPython module is installed on your system, you will have access to the GUI
interface of relax. To launch relax in GUI mode, type either

$ relax -g

or
$ relax --gui

In most cases you will probably like to have a permanent copy of all the messages, warnings,
and errors relax produces for future reference. In such a case you could run the GUI with:

$ relax --gui --log log
This will place all of the output into the log file.

The GUI is currently an interface to the automated analyses, providing an easy way to
perform quick analyses. The interface consists of a tab for each analysis. By clicking on the
“File—New analysis” menu entry or the “New analysis” toolbar button, the analysis wizard
will appear (see Figure 1.4). The following analyses can be set up using this wizard:

1.2. HOW TO USE RELAX 15

relax 1.3.14 N -3 X

File Wiew Userfunctions Tools Help

°°Q BHHEA 7 #ule=

Steady-state NOE | R1 relaxation | Model-free

Setup for steady-state NOE analysis

The data pipe: noe (Mon Sep 19 11:36:23 2011)
» Onn NMR frequency label [MHz] 500
o Results directory fdatafrelaxfguifgui_testing/noe 1 Change
‘W Spin systems 4 spins loaded and selected # Spin editor
N

Spectra list
g add == Delete
Spectrum ID string NOE spectrurm type

ali il ref Reference
i = ‘ sat Saturated

A Execute relax

(c) 2001-2011 the relax development team Current data pipe noe (Mon Sep 19 11:36:23 2011)

Figure 1.5: Screenshot of the relax GUI interface — the steady-state NOE analysis.

Steady-state NOE: this provides access to the steady-state NOE calculation with
pseudo Monte Carlo simulations for error analysis (this falls back to bootstrapping
as this is a calculation rather than optimisation). See Figure 1.5 on page 15.

R; and Ry : these provide easy access to optimisations and error analysis for the R; and
Ro relaxation rates via exponential curve-fitting (see Figures 1.6 and 1.7 on pages 16
and 17).

Model-free analysis : A fully automatic model-free protocol is provided in another tab.
This operates via the dauvergne _protocol module which implements the protocol
of d’Auvergne and Gooley (2008¢c) (see Figure 1.8 on page 18).

A number of windows in the GUI provide user feedback or allow for the viewing and editing
of data. These include:

The relax controller : This window shows the progress of relax’s execution and displays
relax’s text output for checking if the analysis has been performed correctly and has
completed successfully (see Figure 1.9).

Spin viewer window : This is used to load spins system information into the relax data
store and to see the contents of the spin containers (see Figure 1.10).

Results viewer window : This presents a list of the results files which can be opened
by double clicking for visualisation using a text editor, Grace, PyMOL, MOLMOL,
etc (see Figure 1.11).

16 CHAPTER 1. INTRODUCTION

relax 1.3.14 ¥ -3 X

File Wiew Userfunctions Tools Help

°°0 BEHE 7 # .=

Steady-state NOE R1 relaxation | Model-free

1 |) | Setup for R1 relaxation analysis
| . If\U‘ ‘!\‘ The data pipe: rl (Mon Sep 19 11:46:55 2011)
: A MR frequency label [MHz] 500

Q Results directory fdatafrelaxiguifgui_testing/rl [Change
Spin systems 8 spins loaded and selected # Spin editor:

Spectra list

o Add == Delete

Spectrum ID string Delay times Replicate IDs
1 0.172 1b
1b 0172 1
\\‘t Y 2 0.344
P N 1 0.688 4b
T b 0.688
6 1.032
9 1548 9b
9b 1.548 9
1 1.892 11b
T

Grid search increments: 21

Monte Carlo simulation number: 200

A Execute relax

(c) 2001-2011 the relax development team Current data pipe r1 (Mon Sep 18 11:46:55 2011)

Figure 1.6: Screenshot of the relax GUI interface — the Ry analysis.

Data pipe editor : This window allows for easy manipulation of the data pipes of the
relax data store (see Figure 1.12).

The relax prompt : This window gives access to the relax prompt (see Figure 1.13).

1.2.11 Access to the internals of relax

To enable advanced Python scripting and control, many parts of relax have been designed
in an object oriented fashion. If you would like to play with internals of the program the
entirety of relax is accessible by importation. For example all data is contained within
the object called the relax data store which, to be able to access it, needs be imported by
typing:

relax> from data_store import Relax_data_store; ds = Relax_data_store ()

The ds object is a dictionary type which contains the multiple data pipes. All of relax’s
packages, modules, functions, and classes are also accessible by import statements. For
example to create a rotation matrix from three Euler angles in the z-y-z notation, type:

relax> alpha = 0.1342

relax> beta = 1.0134

relax> gamma = 2.4747

relax> from lib.geometry.rotations import euler_to_R_zyz
relax> from numpy import float64, zeros

relax> R = zeros((3,3), float64)

1.3. THE MULTI-PROCESSOR FRAMEWORK 17

relax1.3.14 =5 X
File Wiew Userfunctions Tools Help
%O BHEA 7§ ul=
Steady-state NOE | R1 relaxation | Model-free R2 relaxation
Setup for R2 relaxation analysis
The data pipe: r2 (Fri Mar 16 17:44:48 2012)
NMR frequency label [MHz] [1000 |
Results directory fdatafrelaxiguifgui_testing 1 Change
Spin systems 0 spins loaded and selected # Spin editor:
Spectra list
o Add == Delete
Speetrum ID string
Grid search increments: 21
Monte Carlo simulation number: 500
A Execute relax

(c) 2001-2011 the relax development team Current data pipe r2 (Fri Mar 16 17:44.:48 2012)

Figure 1.7: Screenshot of the relax GUI interface — the Ry analysis.

relax> euler_to_R_zyz(alpha, beta, gamma, R)

relax> print (R)

[[-0.494666415429033 -0.557373756841289 -0.666813041737502]
[0.219125193028791 -0.822460914570202 0.524921131013452]
[-0.84100492699311 0.113545317776532 0.528978424497956]]

relax>

1.3 The multi-processor framework

1.3.1 Introduction to the multi-processor

Thanks to Gary Thompson’s multi-processor framework, relax can be run on multi-
core/multi-CPU systems or on clusters to speed up calculations. As most analyses are
relatively quick and would not benefit from the multi-processor framework, only the model-
free and frame order analyses have currently been parallelised to run within this framework.
To use the multi-processor framework, the following should be installed:

OpenMPI: This is the most commonly used Message Passing Interface (MPI) protocol
software. The rest of this manual will assume that this is the implementation in use.
If another implementation is used, please see the specific documentation for that
software for how to set up a program to run via MPL.

http://www.open-mpi.org/

18

File View Userfunctions (a-m) User functions (n-z) Tools Help

9 ﬂ@ QHH f‘-ui'= =

Model-free

relax repository checkout

Setup for model-free analysis

T . The data pipe bundle:
\ Results directory

Spin systems

Relaxation data list

S Add

Relaxation data ID
noe_500

r1_500

r2_500

noe_900

r1_900

r2_900

o Dipolar relaxation

Local Tm models:

Model-free models:

Grid search increments

Monte Carlo simulation number:
Maximum interations

Protocol mode:

€ About

(C) 2001-2012 the relax davelopment team

Figure 1.8:

mf (Mon Jul 25 14:53:18 2011)
fdata/relaxfbranches/gui_testing/mf

9 spins loaded and selected

ke Add = Delete
Data type
MNOE

R1

R2

MNOE

Rl

R2

%> CSA relaxation

CHAPTER 1. INTRODUCTION

@ view metadata

QD xisotope

[tmor, 'tm1', tm2', tm3', tma4', 'tms', 'tm6', tm7", tm8', 'tmg']

['m0', 'm1', 'm2", 'm3. 'm4', 'm5*, 'mé', 'm7', 'm&', 'm9']

3
2
25

Fully automated

Current data pipe:

Frequency (Hz)
500000000.0
500000000.0
500000000.0
900000000.0
900000000.0
500000000.0

final

- X

3 change
spin editor

& Hisotope

P Modify
P Modify

o Change

A Execute relax

Screenshot of the relax GUI interface — the automated model-free analysis.

The analysis is fully automated via a new model-free protocol as described in detail in
Chapter 7. Clicking on the “About” button in the bottom left hand corner will give a
full description of the protocol. For using this interface or any of the modern-day model-
free protocols, data from at least two magnetic field strengths must be without question

collected.

1.3. THE MULTI-PROCESSOR FRAMEWORK 19

The relax controller -3 X

L3

PN

Current GUI analysis: Model-free
Current data pipe: final
Global model: final

Incremental progress

Monte Carlo simulations:

Execution progress:

relax> nolnol.macro_writeldata_type='tine_fast', style='classic', colour_start=None, colour_end=None, colour_list=None, file=None, dir='/data/relax/gui/gui_testing/nf/final/nolnal’, force=True) &
Opening the file '/datasrelax/guifgui_testing/mf/final/molnol/time_fast.mac' for writing

relax> nolnol macro_writeldata_type='tine_slow', style='classic’, colour_start=None, colour_end=None, colour_list=None, file=None, dir='/datasrelax/gui/gui_testing/nt/final/malnol*, force=True)
Opening the file '/data/relax/gui/gui_testing/mf/final/molnol/time_slow.mac' for writing

relax> nolnol .macro_write(data_type='rex', style='classic'. colour_start=Nane, colour_end=None, colour_list=None, file=None, dir='/data/relax/quisgui_testing/nf/final/nolmol . force=Truel
Opening the file ‘/data/relax/gui/gui_testing/nf/final/molmol/rex.nac’ for writing

relax> structure.create_diff_tensor_pdb(scale=1.8¢-06, file='tensor.pdb', dir='/data/relax/gui/gui_testing/mf/final®, force=True)

chain A
Calculating the centre of mass

Total mass: M = 270, 2635199999999

Centre of mass: R = array([-1.491 s, ©

8.215855581435163¢ -19] |

Generating the geometric object
Cresting the uniform vector distribution.

Generating the PDB file.
Opening the file */datasrelax/qui/gui_testing/nf/final/tensor.pdb® for writing,

Creating the PDB recor ds

REMARK
HET

HETNAN

FORMUL

ATOM, HETATH, TER
conEcT

MASTER
END

Figure 1.9: Screenshot of the relax GUI interface — the relax controller window. The
purpose of the controller is for feedback. It shows the current analysis and current data
pipe, a number of progress gauges, and the relax text output.

mpidpy: This dependency is essential for running in MPI mode in relax. If you would like
to use another Python implementation to access the MPI protocol, please consider
becoming a relax developer.

1.3.2 Usage of the multi-processor

If you have access to a 256 node cluster and can run calculations on all nodes, assuming
that the dauvergne protocol.py automated model-free analysis sample script will be
used (after modification for the system under study), relax can be executed by typing:

$ mpirun -np 257 /usr/local/bin/relax --multi=‘mpidpy’ --tee log dauvergne_protocol.py

Note that the argument -np value is one more than the number of slaves you would like
to run. You should then see the following text in the initial relax printout:

Processor fabric: MPI 2.1 running via mpi4py with 256 slave processors & 1 master. Using

Open MPI 1.4.3.

1.3.3 Further details

For a full description of the multi-processor framework and how to use it, please see Gary
Thompson’s official announcement on the relax-devel mailing list.

http://mpi4py.scipy.org/
https://mail.gna.org/public/relax-devel/2007-05/msg00000.html

20 CHAPTER 1. INTRODUCTION

The spinviewer -5 X
User functions

ﬁ e current data pipe: [final =

< Spin system information

< 1} Molecule: sphere_moll Spln container

= @ Residue: 1 GLY

@& spini 1N
~ @ Residue: 2 GLY Molecule: sphere_moll
& spin:3n Residue number. 5
< @ Residue; 3 GLY Residue name: GLY
ﬂ Spin: 5 N Spin number: 9
= @ Residue: 4 GLY Spin name: N
& spini 7N Spin ID string #sphere_moll:5& GLY@9&@N'

~ ® Residue: 5 GLY

¢ Spin container contents
= @ Residue; 6 GLY

@ spin: 11 n Variable value e
= @ Residue: 7 GLY attached_atom H str

& Spini 13N attached_proton NoneType | |
~ - ® Residue: 8 GLY chiz NoneType

& spini 15N chiz_sim [3.36252733148, list

275191352481,
1.7115057845,

538464830103,
1.90790847667,
6.04146920204,
288296656099,
650364998981,
285861028353,
397212044816,
1.3834288393,

338955331178,

= @ Residue: 9 GLY
& spin: 17 N

0876623236708,
0577897879683,
562587882214,
104778933722,
1.63077445953,
1.74192384394,
595936949156,

Figure 1.10: Screenshot of the relax GUI interface — the spin viewer window. This viewer
is designed for easy addition and manipulation of spin systems within the relax data store.
The window is accessible via the “View—Spin viewer” menu entry, typing “[Ctrl-T]”, the spin
viewer button in the toolbar, or the “spin editor” button within the auto-analysis tabs.

1.3. THE MULTI-PROCESSOR FRAMEWORK 21

Results viewer -5 X
Data pipe selection final A d
File type File path
Grace Jijqui_testing 2.agr
Grace Jdatafrelaxfguijqui_testingmffinaligrace/te.agr
Grace jdatayr Jijqui_testing/rmffi 2_vs_teagr
Text Idatajrelaxfgui/gui_testing/mfffinal/s2 txt
Text Idatajrelaxfgui/gui_testing/mfifinal/s2fixt
Text Idatajrelax/gui/gui_testing/mffinals2s txt
Text Idatajrelaxfgui/gui_testing/mffinalite.txt
Text Idatairelaxfgui/gui_testing/mfffinalitfxt
Text Jdatajrelaxfgui/gui_testing/mfffinalits txt
Tert Idatairelaxfguijgui_testing/mfffinalirex.txt
Text Idatajrelaxfgui/gui_testing/mfffinalflocal_tr txt
PyMoL Idatajrelaxfgui/gui_testing/mfffinalipymel/s2 pml
PyMoL Jdatajrelaxfguijgui_testing/mffinalipymel/s2fpml
PyMOL d laxfgui/gui_testing I/pymoljs2s.prol
PyMOL iijqui_testing P p_fast pr
PyMOL Jijgui_testing P p_slow.pml
PyMOL. Idatajrelaxfgui/gui_testing/mfffinaljpymoltte.pml
PyMOL Idatajrelax/gui/gui_testing/mf/finaljpymolf.prml
PyMOL Idatajrelax/gui/gui_testing/mffinalipymolts. pml
PyMOL Idatajrelaxfgui/gui_testing/mfffinalipymoltime_fast.pml
PyMOL Jdatajrelaxfgui/gui_testing/mfffinalipymoltime_slow.pml
PyMoL Idatajrelaxfgui/gui_testing/mfffinalipymelrex.pml
Molmal Idatajrelaxfguifgui_testing/mffinalimolmolis2.mac
Molmal Idatajrelaxfgui/gui_testing/mffinalimelmolfs2fmac
Molmal Idatajrelaxfgui/gui_testing/mffinalimelmolfs2s.mac
Molmol Jdatajrelaxfguijqui_testingfmfffinalimolmolfamp_fast.mac
Molmol Jdatajrelaxfguijqui_testing/rmfffinalimolmolfamp_slow.mac
Molmol lijgui_testing mac
Molmol lijgui_testing mac
Molmol Jdatajrelaxfguijgui_testing/mfffinaljmolmolfts.mac
Molmol Jdatafrelaxfguijgui_testing/mffinalimolmolftime_fast.mac
Molmol Idatajrelax/gui/gui_testing/mffinalimolmoltime_slow.mac
Molmol Idatajrelaxfgui/gui_testing/mffinalimolmolrex.mac
Diffusion tensor PDB Idatajrelaxfgui/gui_testing/mffinaltensor.pdb

Figure 1.11: Screenshot of the relax GUI interface — the results viewer window. At the
end of one of the automated analyses, a number of results files will be created. This
can include text files containing the results, 2D Grace plots of the results, PyMOL and
MOLMOL macros plotting the results onto the structure, diffusion tensor objects for
viewing in PyMOL, etc. This window allows for easy opening of these results files.

Data pipe editor -0 X

#= Bundle &r‘i Create éi": Copy == Delete == Hybridise E Switch
Data pipe Type Bundle Current Analysis tab
1 |ellipsoid mf
2 final mf
3 local _tm mf
4 mfi{Mon Sep 19 16:06:24 2011) mf mf (Mon Sep 19 16:06:24 2011) cdp Model-free
5 noe (Mon Sep 19 11:26:23 2011) noe noe (Mon Sep 19 11:26:23 2011) Steady-state NOE
6 oblate mf
7 | prolate mf
g rl(MonSep 18 11:46:55 2011) relax_fit rl (Mon Sep 19 11:46:55 2011) R1 relaxation
g sphere mf

Figure 1.12: Screenshot of the relax GUI interface — the pipe editor window. One analysis
may consist of one or more data pipes. And each analysis has its own unique set of data
pipes. This editor allows for the easy manipulation of data pipes for advanced users.

22 CHAPTER 1. INTRODUCTION

The relax prompt =0 X

relax 1.3.14
Molecular dynamics by NMR data analysis

Copyright (C) 2001-2006 Edward d'Auvergne
Copyright (C) 2006-2012 the relax development team

This is free software which you are welcome to modify and redistribute under the conditions of the
GNU General Public License (GPL). This program, including all modules, is licensed under the GPL
and comes with absolutely no warranty. For details type 'GPL' within the relax prompt.

Assistance in using the relax prompt and scripting interface can be accessed by typing 'help' within
the prompt.

Processor fabric: Uni-processor.
Startup script executed: /etec/pythonrc.py

relax> pipe.display()
Data pipe name Data pipe type Current
m

'sphere’ mf

‘oblate’ mf

‘final® mf *
‘prolate’ mf

relax= |

Figure 1.13: Screenshot of the relax GUI interface — the prompt window. This win-
dow mimics relax in the prompt user interface mode, and provides the full power of the
prompt /script Ul modes within the GUIL.

1.4 Usage of the name relax

The program relax is so relaxed that the first letter should always be in lower case!

Chapter 2

Installation instructions

2.1 Dependencies

The following packages need to be installed before using relax:

Python: Version 2.5 or higher.

NumPy: Version 1.0.4 or higher. This package is used for most of the numerical calcu-
lations within relax.

SciPy: Version 0.7.1 or higher. This package is optional. It is required only for the frame
order theory analyses.

wxPython: Version 2.8 or higher. This package is also optional. It is required for the
operation of the graphical user interface (GUI).

mpidpy: Version 1.2 or higher. This optional dependency is essential for running relax
in MPI multi-processor mode.

Older versions of these packages may work, use them at your own risk. If, for older
dependency versions, errors do occur please submit a bug report to the bug tracker at
https://gna.org/bugs/?group=relax. That way a solution may be created for the next
relax release.

Note that only the official Python distribution from http://python.org is supported. If you
use the Enthought Python Distribution (EPD) or other non-official distributions you may
encounter problems with the relax C modules, the graphical user interface, or other issues.
These alternative distributions are to be used at your own risk. Any issues encountered
will not be considered as relax bugs.

23

http://python.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://mpi4py.scipy.org/
https://gna.org/bugs/?group=relax
http://python.org

24 CHAPTER 2. INSTALLATION INSTRUCTIONS

2.2 Installation

2.2.1 The source releases

Two types of software packages are available for download — the precompiled and source
distribution. Currently only relaxation curve-fitting requires compilation to function and
all other features of relax will be fully functional without compilation. If relaxation curve-
fitting is required but no precompiled version of relax exists for your operating system or
architecture then, if a C compiler is present, the C code can be compiled into the shared
objects files *.so0, *.pyd or *.dylib which are loaded as modules into relax. To build
these modules the Scons system from http://scons.org/ is required. This software requires
the Python and numpy header files installed. Once Scons is installed type

$ scons

in the base directory where relax has been installed and the C modules should, hopefully,
compile without any problems. Otherwise please submit a bug report to the bug tracker
at https://gna.org/bugs/?group=relax.

2.2.2 Installation on GNU /Linux

To install the program relax on a GNU/Linux system download either the precompiled
distribution labelled relax-x.x.x.GNU-Linux. arch.tar.bz2 matching your machine ar-
chitecture or the source distribution relax-x.x.x.src.tar.bz2. A number of installation
methods are possible. The simplest way is to switch to the user “root”, unpack and de-
compress the archive within the /usr/local directory by typing, for instance

$ tar jxvf relax-x.x.x.GNU-Linux.i686.tar.bz2

then create a symbolic link in /usr/local/bin by moving to that directory and typing

$ 1n -s ../relax/relax .

and finally possibly creating the byte-compiled Python *.pyc files to speed up the start
time of relax by typing

$ python -m compileall .

in the relax base directory. Alternatively if the Scons system is installed, by typing as the
root user

$ scons install

in the relax base directory, a directory in /usr/local/ called relax will be created,
all the uncompressed and untarred files will be copied into this directory, a symbolic
link in /usr/local/bin to the file /usr/local/relax/relax will be created, and then
finally the Python *.pyc files will be byte-compiled. To change the installation path to a
non-standard location the Scons script sconstruct in the base relax directory should be
modified by changing the variable INSTALL_PATH to point to the desired location.

http://scons.org/
https://gna.org/bugs/?group=relax

2.2. INSTALLATION 25

2.2.3 Installation on MS Windows

In addition to the above dependencies, running relax on MS Windows requires a number
of additional programs. These include:

pyreadline: Version 1.3 or higher.

ctypes: The pyreadline package requires ctypes.

To install, simply download the pre-compiled binary distribution relax-x.x.x.Win32.zip
or the source distribution relax-x.x.x.src.zip and extract the files to C:\Program
Files\relax-x.x.x. Then add this directory to the system environment path (in Win-
dows XP, right click on “My Computer”, go to “Properties”, click on the “Advanced” tab,
and click on the “Environment Variables” button. Then double click on the “Path” system
variable and add the text “;C:\Program Files\relax-x.x.x” to the end of variable value field.
The Python installation must also be located on the path (add the text *C:\Python27”,
changing the text to point to the correct directory, to the field). To run the program from
any directory inside the Windows command prompt (or dos prompt) type:

C:\> relax
Note that the pre-compiled binary distribution was built using a specific Python version

and that that version may need to be installed for the modules to be loaded. More details
are given on the download webpage.

2.2.4 Installation on Mac OS X

There are three ways of installing relax on a Mac. These are described at
http://www.nmr-relax.com/download.html and are the pre-compiled relax application,
the Fink or the source releases.

The relax application

The stand-alone relax application requires none of the dependencies listed above to be
installed. It is a universal binary compiled for the i386, x86-64 and PPC CPU architectures
(fat3) using the Mac OS X 10.5 framework. It should therefore run on Leopard, Snow
Leopard, and Lion. This very large bundle does not require system administrator access
to run.

Fink

Certain relax versions are available for Mac OS X within the Fink project. These can be
installed for Python 2.7 with the command:

> fink install relax-py27

The relax releases packaged within Fink can been browsed at
http://pdb.finkproject.org/pdb/browse.php?name=relax. If the desired version is

http://projects.scipy.org/ipython/ipython/wiki/PyReadline/Intro
http://starship.python.net/crew/theller/ctypes/
http://www.nmr-relax.com/download.html
http://www.nmr-relax.com/download.html
http://pdb.finkproject.org/pdb/browse.php?name=relax

26 CHAPTER 2. INSTALLATION INSTRUCTIONS

not available, please download the relevant source package below or contact the fink
project using the “Maintainer” email address given in the relax fink pages.

Note that when installing via fink, all the dependencies will be automatically selected and
installed as well. Although automatic, when starting from scratch that there could be well
over 250 source packages that need to be compiled (to set up the full GNU compilation
chain and other libraries which are then required to build Python, numpy, scipy, etc.).
This may take anywhere between 2 days to over a week (don’t forget to mention this fact
to your poor sys-admin).

The fink relax packages for different Python versions are relax-py27, relax-py26, relax-py25
and relax-py24.

Source release

See Section 2.2.1 on page 24.

2.2.5 Installation on your OS

For all others systems, please use the source distribution files and the Scons software to
build the C modules.

2.2.6 Running a non-compiled version

Compilation of the C code is not essential for running relax, however certain features of
the program will be disabled. Currently only the exponential curve-fitting for determining
the Ry and Ry relaxation rates requires compilation. To run relax without compilation
install the dependencies detailed above, download the source distribution which should be
named relax-x.x.x.src.tar.bz2, extract the files, and then run the file called relax in
the base directory.

2.3 Optional programs

The following is a list of programs which can be used by relax although they are not
essential for normal use.

2.3.1 Grace

Grace is a program for plotting two dimensional data sets in a professional look-
ing manner. It is used to visualise parameter values. It can be downloaded from
http://plasma-gate. weizmann.ac.il/Grace/ .

http://pdb.finkproject.org/pdb/package.php/relax-py27
http://pdb.finkproject.org/pdb/package.php/relax-py26
http://pdb.finkproject.org/pdb/package.php/relax-py25
http://pdb.finkproject.org/pdb/package.php/relax-py24
http://plasma-gate.weizmann.ac.il/Grace/

2.3. OPTIONAL PROGRAMS 27

2.3.2 OpenDX

Version 4.1.3 or compatible. OpenDX is used for viewing the output of the space mapping
function and is executed by passing the command dx to the command line with various
options. The program is designed for visualising multidimensional data and can be found
at http://www.opendx.org/.

2.3.3 Molmol

Molmol is used for viewing the PDB structures loaded into the program and to display
parameter values mapped onto the structure.

2.3.4 PyMOL

PDB structures can also be viewed using PyMOL. This program can also be used to
display geometric objects generated by relax for representing physical concepts such as
the diffusion tensor and certain cone diffusion models.

2.3.5 Dasha

Dasha is a program used for model-free analysis of NMR relaxation data. It can be used as
an optimisation engine to replace the minimisation algorithms implemented within relax.

2.3.6 Modelfree4

Art Palmer’s Modelfree4 program is also designed for model-free analysis and can be used
as an optimisation engine to replace relax’s high precision minimisation algorithms.

http://www.opendx.org/

28

CHAPTER 2. INSTALLATION INSTRUCTIONS

Chapter 3

Open source infrastructure

3.1 The relax web sites

The main web site for relax is http://www.nmr-relax.com. From these pages general
information about the program, links to the latest documentation, links to the most current
software releases, and information about the mailing lists are available. There are also
Google search capabilities built into the pages for searching both the HTML version of the
manual and the archives of the mailing lists.

The relax web site is hosted by the Gnal project (https://gna.org/) which is described as
“a central point for development, distribution and maintenance of Libre Software (Free
Software) projects”. relax is a registered Gna! project and its primary Gna! web site is
https://gna.org/projects/relax. This site contains many more technical details than the
main web site.

3.2 The mailing lists

A number of mailing lists have been created covering different aspects of relax. These
include the announcement list, the relax users list, the relax development list, and the
relax committers list.

3.2.1 relax-announce

The relax announcement list “relax-announce at gna.org” is reserved for important an-
nouncements about the program including the release of new program versions. The
amount of traffic on this list is relatively low. If you would like to receive infor-
mation about relax you can subscribe to the list by vising the information page at
https://mail.gna.org/listinfo/relax-announce/. Previous announcements can be viewed
at https://mail.gna.org/public/relax-announce/.

29

http://www.nmr-relax.com
https://gna.org/
https://gna.org/projects/relax
https://mail.gna.org/listinfo/relax-announce/
https://mail.gna.org/public/relax-announce/

30 CHAPTER 3. OPEN SOURCE INFRASTRUCTURE

3.2.2 relax-users

If you would like to ask questions about relax, discuss certain features, receive help, or to
communicate on any other subject related to relax the mailing list “relax-users at gna.org”
is the place to post your message. To subscribe to the list go to the relax-users information
page at https://mail.gna.org/listinfo/relax-users/. You can also browse the mailing list
archives at https://mail.gna.org/public/relax-users/.

3.2.3 relax-devel

A second mailing list exists for posts relating to the development of relax. The list
is “relax-devel at gna.org” and to subscribe go to the relax-devel information page at
https://mail.gna.org/listinfo/relax-devel /. Feature requests, program design, or any other
posts relating to relax’s structure or code should be sent to this list instead. The mailing
list archives can be browsed at https://mail.gna.org/public/relax-devel/.

3.2.4 relax-commits

One last mailing list is the relax commits list. This list is reserved for automatically
generated posts created by the version control software which looks after the relax source
code and these web pages. If you would like to become a developer you can subscribe to
the list at relax-commits information page https://mail.gna.org/listinfo/relax-commits/.
The list can also be browsed at https://mail.gna.org/public/relax-commits/ .

3.2.5 Replying to a message

When replying to a message on these lists remember to hit ‘respond to all’ so that the
mailing list is included in the CC field. Otherwise your message will only be sent to the
original poster and not return back to the list. Only messages to relax-users and relax-
devel will be accepted. If you are using Gmail’s web based interface, please do not click
on ‘Edit Subject’ as this currently mangles the email headers, creates a new thread on the
mailing list, and makes it difficult to follow the thread.

3.3 Reporting bugs

One of the philosophies in the construction of relax is that if there is something which
is not immediately obvious then that is considered a design bug. If any flaws in re-
lax are uncovered including general design flaws, bugs in the code, or documentation
issues these can be reported within relax’s bug tracker system. The link to submit
a bug is https://gna.org/bugs/7group=relax&func=additem while the main page for
browsing, submitting, viewing the statistics, or searching through the database is at
https://gna.org/bugs/?group=relax. Please do not report bugs to personal email ad-
dresses or to the mailing lists.

https://mail.gna.org/listinfo/relax-users/
https://mail.gna.org/public/relax-users/
https://mail.gna.org/listinfo/relax-devel/
https://mail.gna.org/public/relax-devel/
https://mail.gna.oactuallyrg/listinfo/relax-commits/
https://mail.gna.org/public/relax-commits/
https://gna.org/bugs/?group=relax&func=additem
https://gna.org/bugs/?group=relax

3.4. LATEST SOURCES — THE RELAX REPOSITORIES 31

When reporting a bug please include as much information as possible so that the problem
can be reproduced. Include information such as the release version or the revision number
if the repository sources are being used. Also include all the steps performed in order to
trigger the bug. Attachment of files is allowed so scripts and subsets of the input data
can be included. However please do not attach large files to the report. Prior to reporting
the bug try to make sure that the problem is indeed a bug and if you have any doubts
please feel free to ask on the relax-users mailing list. To avoid duplicates be sure that the
bug has not already been submitted to the bug tracker. You can search the bugs from the
page https://gna.org/project /search.php?group=relax.

Once the bug has been confirmed by one of the relax developers you may speed up the
resolution of the problem by trying to fixing the bug yourself. If you do wish to play with
the source code and try to fix the issue see the relax development chapter of this manual
on how to check out the latest sources (Chapter 12 on page 233), how to generate a patch
(which is just the output of diff in the ‘unified’” format), and the guidelines for the format
of the code.

3.4 Latest sources — the relax repositories

relax’s source code is kept within a version control system called Subversion
(http://subversion.tigris.org/). Subversion or SVN allows fine control over the develop-
ment of the program. The repository contains all information about every change ever
made to the program. To learn more about the system the Subversion book located at
http://svnbook.red-bean.com/ is a good place to start. The contents of the relax reposi-
tory can be viewed on-line at http://svn.gna.org/viewcvs/relax/. The current sources can
be downloaded using the SVN protocol by typing

$ svn co svn://svn.gna.org/svn/relax/trunk relax-trunk

however if this does not work, try the command

$ svn co http://svn.gna.org/svn/relax/trunk relax-trunk

to download using the HTTP protocol. The entire relax repository is backed up daily to
http://svn.gna.org/daily /relax.dump.gz.

3.5 News

Summaries of the latest news on relax can be found on the relax web site
https://gna.org/projects/relax. However more information can be found at the dedicated
news page https://gna.org/news/?group=relax.

3.6 The relax distribution archives

The relax distribution archives, the files to download to install relax, can be found at
http://download.gna.org/relax/. If a compiled binary distribution for your architecture

https://gna.org/project/search.php?group=relax
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://svn.gna.org/viewcvs/relax/
http://svn.gna.org/daily/relax.dump.gz
https://gna.org/projects/relax
https://gna.org/news/?group=relax
http://download.gna.org/relax/

32 CHAPTER 3. OPEN SOURCE INFRASTRUCTURE

does not exist you are welcome to create this distribution yourself and submit it for in-
clusion in the relax project. To do this a number of steps are required. Firstly, the code
to each relax release or version resides in the ‘tags’ directory of the relax repository. To
check out version 2.1.1 for example type

$ svn co svn://svn.gna.org/svn/relax/tags/2.1.1 relax

Again the sources are available through HTTP by typing

$ svn co http://svn.gna.org/svn/relax/tags/2.1.1 relax

The binary distribution can then be created for your architecture by shifting to the main
directory of the checked out sources and typing

$ cd relax

$ scons binary_dist

At the end SCons will attempt to make a GPG signature for the newly created archive.
However this will fail as the current relax private GPG key is not available for secu-
rity reasons. If the SCons command fails, excluding the GPG signing, please submit
a bug report with as much information possible including the details described next to
https://gna.org/bugs/?group=relax&func=additem (the python and SCons version num-
bers may also be useful). Once the file has been created post a message to the relax
development mailing list describing the compilation and the creation of the archive, the
relax version number, the machine architecture, operating system, and the name of the
new file. Do not attach the file though. You will then receive a response explaining where
to send the file to. For security the archive will be thoroughly checked and if the source
code is identical to that in the repository and the C modules are okay, the file will be GPG
signed and uploaded to http://download.gna.org/relax/.

https://gna.org/bugs/?group=relax&func=additem
http://download.gna.org/relax/

Chapter 4

The relax data model

4.1 The concept of the relax data model

To begin to understand how to use relax, a basic comprehension of the relax data model
is needed. The data model includes the concepts of the relax data store, the data pipes,
the molecule, residue and spin data structures and the interatomic data containers. These
concepts are independent of the specific analyses presented in the next chapters and are
important for setting up relax.

4.2 The data model

4.2.1 The relax data store

All permanent data handled by relax is kept in a structure known as the relax data store.
This structure is initialised when relax is launched. The data store is primarily organised
into a series of objects known as data pipes, and all usage of relax revolves around the
flow of information in these data pipes.

Data pipes

—

The first thing one must do when relax is launched is to create a data pipe. When using
the GUI, a base data pipe will be created when opening one of the automatic analyses via
the analysis selection window (see figure 1.4 on page 12). This will also create a data pipe
bundle for the analysis (vide infra). Alternatively the data pipe editor window can be

33

34 CHAPTER 4. THE RELAX DATA MODEL

used to create data pipes (see figure 1.12 on page 21). For the prompt /scripting modes, or
the “User functions—pipe—create” menu entry, a data pipe can be initialised by specifying
the unique name of the data pipe and the data pipe type:

pipe.create(pipe_name='NOE 1200 MHz', pipe_type='noe')

A number of relax operations will also create data pipes by merging a group of pipes or
branching pre-existing pipes. See section 1.2.6 on page 10 for additional details.

All data not associated with spin systems will be stored in the base data pipe. This
includes information such as global optimisation statistics, diffusion tensors, alignment
tensors, 3D structural data, the molecule, residue and spin container data structure and
the interatomic data containers. One data pipe from the set will be defined as being the
current data pipe, and all operations in relax will effect data from this pipe. The pipe.
switch user function in all UI modes can be used to change which pipe is the current data
pipe. In the GUI, switching between analysis tabs will automatically switch the current
data pipe to match the analysis being displayed.

Data pipe bundles

P
—

Related data pipes can be grouped into a ‘bundle’. For example if the data pipes “sphere”,
“oblate spheroid”, “prolate spheroid”, and “ellipsoid” preexist, these can be grouped into
a bundle called “diffusion tensors” with the following series of user function calls:
pipe.bundle (bundle='diffusion tensors', pipe='sphere')

pipe.bundle (bundle='diffusion tensors', pipe='oblate spheroid')

pipe.bundle (bundle='diffusion tensors', pipe='prolate spheroid')
pipe.bundle (bundle='diffusion tensors', pipe='ellipsoid')

The data pipe editor window of the GUI can also be used to bundle pipes together (see
figure 1.12 on page 21).

4.2.2 Molecule, residue, and spin containers

Within a data pipe is the molecule, residue, and spin container data structure. Data
which is specific to a given nucleus is stored in a special spin container structure. This
includes relaxation data, model-free parameters, reduced spectral density mapping values,
spin specific optimisation parameters, chemical shift tensor information, pseudo-contact
shift values, etc. The spin containers can be created from 3D structural data or a sequence
file, as described in the next two sections, or manually built.

4.2. THE DATA MODEL 35

Molecule containers

The spin containers are part of a nested set of containers, and are graphically depicted in
the spin viewer window of the GUI in figure 1.10 on page 20. As can be seen from the
figure, the top level holds a single molecular container. Multiple molecular containers can
be present if the study is of a molecular complex. Using the GUI menus or the promp-
t/scripting mode, molecule containers can be manually created with the user function:

molecule.create (mol_name='glycerol', mol_type='organic molecule')

In the spin viewer window of the GUI, right clicking on the “Spin system information” element
will pop up a menu with an entry for adding molecule containers. Right clicking on
molecule containers will show a pop up menu with an entry for permanently deleting the
container.

Residue containers

Nested within the molecule containers are residue containers. These are graphically de-
picted in the spin viewer window (see figure 1.10 on page 20). Each molecule container can
possess multiple residues. These require either a unique residue number or unique residue
name. For organic molecules where the residue concept is meaningless, all spin containers
can be held within a single unnamed and unnumbered residue container. Using the GUI
menus or the prompt/scripting mode, residue containers can be manually created with the
user function:

residue.create(res_num='-5', res_name='ASP')

Alternatively residues can be added in the spin viewer window from the pop up menu
when right clicking on molecule containers, and can be deleted via the pop up menu when
right clicking on the residue to delete.

36 CHAPTER 4. THE RELAX DATA MODEL

Spin containers

Spin containers are nested within a residue container (again graphically depicted in the spin
viewer window in figure 1.10 on page 20). Multiple spin containers can exist per residue.
This allows, for example, a single model-free analysis simultaneously on the backbone
nitrogen spins, side-chain tryptophan indole nitrogen spins and alpha carbon spins. Or,
for example, studying the pseudocontact shifts for all nitrogen, carbon and proton spins
in the molecule simultaneously.

Spin containers can be manually added via the spin.create user function in the GUI or
prompt/scripting mode:

spin.create(spin_num='200', spin_name='NE1l')

The spin viewer window can also be used by right clicking on residue containers.

Spin ID strings

Spins are often identified in relax using their ID strings. The spin ID strings follow the basic
construct found in a number of other NMR software such as MOLMOL. The identification
string is composed of three components:

e The molecule ID token beginning with the “#” character,

]

e The residue ID token beginning with the character,

e The atom or spin system ID token beginning with the “@” character.
Each token can be composed of multiple elements — one per spin — separated by

the “,” character and each individual element can either be a number (which must
be an integer, in string format), a name, or a range of numbers separated by

the “-” character. Negative numbers are supported. The full ID string spec-
ification is “#<mol_name> :<res_id>[, <res_id>[, <res_id>, ...]] @<atom_id>[,
<atom_id>[, <atom_id>, ...]]”, where the token elements are “<mol_name>”, the name

of the molecule, “<res_id>”, the residue identifier which can be a number, name, or range
of numbers, “<atom_id>", the atom or spin system identifier which can be a number, name,
or range of numbers.

If one of the tokens is left out then all elements will be assumed to match. For example if
the string does not contain the “#” character then all molecules will match the string. If
only the molecule ID component is specified, then all spins of the molecule will match.

Regular expression can, in some instances, be used to select spins. For example the string
“@H*” will select the protons ‘H’, ‘H2’ and ‘H98’.

4.3. INTERATOMIC DATA CONTAINERS 37

4.3 Interatomic data containers

Separate from the spin containers, yet strongly linked to them, are the interatomic data
containers. These containers are grouped together within the same data pipe as the spins
they point to. These define interactions between two spins located anywhere within the
molecule, residue and spin nested data structure. These are automatically created when
reading in data defined between two spins such as RDCs and NOE distance constraints.
They can also be created using the interatom.define user function:

interatom.define (spin_id1="':2@N', spin_id2=':2@H')

As the interatomic data container concept is relatively new, how they are created and
handled is likely to evolve and change in the future.

4.4 Setup in the prompt/script Ul

Below are three different examples showing how to set up the relax data model for any
analysis type requiring spin specific data.

4.4.1 Script mode — spins from structural data

3D structural data is stored at the level of the current data pipe. This data is completely
separate from the molecule, residue and spin data structure. However the structural data
can be used to generate the spin containers. For example for the nitrogen relaxation in a
model-free analysis where both the nitrogen and proton are needed to define the magnetic
dipole-dipole relaxation:

Create a data pipe.
pipe.create(pipe_name='ellipsoid', pipe_type='mf')

Load the PDB file.
structure.read_pdb('1£3y.pdb')

Set up the 15N and 1H backbone spins.

38 CHAPTER 4. THE RELAX DATA MODEL

structure.load_spins ('@N', ave_pos=True)
structure.load_spins ('@H', ave_pos=True)

Set up the 15N and 1H for the tryptophan indole ring.
structure.load_spins ('@NE1l', ave_pos=True)
structure.load_spins ('@HE1l', ave_pos=True)

Define the spin isotopes.
spin.isotope('15N', spin_id='G@N*')
spin.isotope('1H', spin_id='QH*')

The structure.read pdb user function will load the structural data into the current data
pipe, and the structure.load spins user function will create the molecule, residue, and
spin containers as needed. This will also load atomic position information into the match-
ing spin containers. The spin.isotope user function is required to define the magnetic
dipole-dipole interaction and is information not present in the PDB file.

Note that if structural data from the PDB is used to generate the spin containers, then all
subsequent data loaded into relax must follow the exact naming convention from the PDB
file. Automatic residue name matching (i.e. ‘GLY’ = ‘Gly’ = ‘gly’ = ‘G’) is currently not
supported.

4.4.2 Script mode — spins from a sequence file

Alternatively to setting up the molecule, residue, and spin containers via 3D structural
data, a plain text columnar formatted file can be used. This is useful for when no 3D
structure exists for the molecule. It also has the advantage that the residue and atom
names need not conform to the PDB standard. An example for reading sequence data is:

Create a data pipe.
pipe.create(pipe_name='R1 1200', pipe_type='relax_fit')

Set up the 15N spins.

sequence.read(file='noe.500.0out', mol_name_col=1, res_num_col=2, res_name_col=3,
spin_num_col=4, spin_name_col=5)

spin.element (element='N', spin_id='@Nx*"')

spin.isotope('15N', spin_id='G@N"')

Here the molecule, residue, and spin information is extracted from the “noe.500.out” file
which could look like:

mol_name res_num res_name spin_num spin_name value error
Ap4Aase_new_3_moll 1 GLY 1 N None None
Ap4Aase_new_3_moll 2 PRO 11 N None None
Ap4Aase_new_3_moll 3 LEU 28 N None None
Ap4Aase_new_3_moll 4 GLY 51 N 0.03892194698453 0.01903177024613

4.5. SETUP IN THE GUI

Ap4Aase_new_3_moll 5 SER 59 N 0.31240422567912 0.01859693729836
Ap4Aase_new_3_moll 6 MET 71 N 0.42850831873249 0.0252585632304
Ap4Aase_new_3_moll 7 ASP 91 N 0.53054928103134 0.02799062314416
Ap4Aase_new_3_moll 8 SER 104 N 0.56528429775819 0.02170612146773
Ap4Aase_new_3_moll 9 PRO 116 N None None

Ap4Aase_new_3_moll 40 TRP 685 N 0.65394813490548 0.03830061886537
Ap4Aase_new_3_moll 40 TRP 698 NE1 0.67073879732046 0.01426066343831

The file can contain columns for the molecule name, the residue name and number, and
the spin name and number in any order though not all are needed. For example for a single
protein system, the molecule name, residue name and spin number are nonessential. Or
for an organic molecule, the molecule name, residue name and number and spin number
could be nonessential. The subsequent user functions in the above example are used to
set up the spin containers appropriately for a model-free analysis. These are not required
in the automatic analysis of GUI as these user functions will be presented to you when
adding relaxation data, or when clicking on the heteronucleus and proton buttons (“X
isotope” and “H isotope”).

In the GUI, the creation of molecule, residue, and spin containers from a sequence file is
also available via the “Load spins” wizard within the spin viewer window (vide supra).

4.4.3 Script mode — manual construction

For the masochists out there, the full molecule, residue and spin data structure can be
manually constructed. For example:

Manually create the molecule, residue, and spin containers.
molecule.create (mol_name='Ap4Aase', mol_type='protein')
residue.create (res_num=1, res_name='GLY')

residue.create (res_num=3, res_name='LEU')

residue.create (res_num=96, res_name='TRP')
spin.create(res_num=1, spin_name='N')

spin.create(res_num=3, spin_name='N")

spin.create (res_num=96, spin_name='N')
spin.create(res_num=96, spin_name='NE1')

These user functions can be repeated until the full sequence has been constructed.

4.5 Setup in the GUI

4.5.1 GUI mode — setting up the data pipe

In the GUI, the most common way to create the data pipe is to initialise one of the auto-
analyses via the analysis selection wizard (see Figure 1.4 on page 12). The initialisation
will create the appropriate starting data pipe. Alternatively the data pipe editor can be
used (see Figure 1.12 on page 21). Or the “User functions—pipe—create” menu item can be
selected for graphical access to the pipe.create user function.

40 CHAPTER 4. THE RELAX DATA MODEL

4.5.2 GUI mode — spins from structural data

For this section, the example of protein °N relaxation data will be used to illustrate how
to set up the data structures. To manipulate the molecule, residue and spin data structures
in the GUI, the most convenient option is to use the spin viewer window (see Figure 1.10
on page 20). This window can be opened in four ways:

e The “View—Spin viewer” menu item,

e The “[Ctrl+T]” key combination,

e The spin viewer icon in the toolbar (represented by the blue spin icon),

e The “Spin editor” button part of the “Spin systems” GUI element in the specific analysis

tabs.

You will then see:

User functions (a-m) User functions (n-z)

Current data pipe: |origin - noe (Fri Aug 311 %
Load spins Refresh

The spin view window

At this point, click on the “Load spins” button (or the “Load spins” menu entry from the
right click pop up menu) to launch the spin loading wizard. A number of options will be
presented to you:

4.5. SETUP IN THE GUI

User functions (a-m) User functions (n-z)

Current data pipe: |origin - noe (Fri Aug 31| ¥

Load spins Refresh

Spin system information

Load spins - X

Spin loading

Select the method for loading spins into relax. Two options are possible: the first is to read sequence information
out of atext file via the sequence read user function; the second is to read in a 3D structure file via the
structure.read_pdb user function and then to load the spins from this structure using the structure load_spins user
function

Please specify by which method spins should be loaded into the relax data store:

From a file containing sequence data.
@ [From a new PDB structur file

From a new XYZ structure file.

& Apply P next @ cancel

¥ Move to the next page

41

Here the spins will be loaded from a PDB file. If you do not have a 3D structure file,
please see the next section. After selecting “From a new PDB structure file” and clicking on

“Next”, you will see:

User functions (a-m) User functions (n-z)

Spin system information

Now select the PDB file you wish to use.

PDB reading.

The structure.read_pdb user function

Reading structures from PDB fies.

Description

The reading of PDE files into relax is quite a flexible procedure allowing for both models, defined as an ensemble of
the same molecule but with different atomic positions, and different molecules within the same model. One of
more molecules can exist in one or more models. The flexibility allows PDB models to be converted into different
molecules and different PDB files loaded as the same molecule but as different models.

Afew different PDB parsers can be used to read the structural data. The choice of which to use depends on
whether your PDB file is supported by that reader. These are selected by setting the parser to one of:

linternal': Afast PDB parser built into relax
‘scientific: The Scientific Python PDB parser.

n a PDB file, the models are specified by the MODEL PDE record. All the supported PDE readers in relax recognise
this. The molecule levelis quite different between the Scientific Python and internal readers. For how Scientific
Python defines molecules, please see its documentation. The internal reader is far simpler as it defines molecules
using the TER PDB record. I both cases, the molecules will be numbered consecutively from 1

The file name: /data/ApaAase_dynamics/Mg/1f3ypdb &=

X
Select the file
The moleculs number to read: i

The setting of molecule names: Apaaase =)
The model to read: [o
The setting of model numbers =)
The PDE parser Fast internal PDB parser v

o Back « Apply W skip P ext @ cancel

The other options in this screen allow you

to handle NMR models and multiple molecules within a single PDB file. These options
are explained in the window. Hovering the mouse over the options will give additional
hints. In this example, the 3'9 model from the 1F3Y PDB file will be read and the single
molecule will be named “Ap4Aase” to override the default naming of “1f3y_moll”. Now click
on “Next” to bring up the spin loading page:

42

User functions (a-m) User functions (n-z)

CHAPTER 4. THE RELAX DATA MODEL

Load spins Refresh Load spins - X

Spin system information

Loading spins from structure.

The structure.load_spins user function

Load spins from the structure into the relax data store.

Description

¢ This allows a sequence to be generated within the relax data store using the atomic information from the structure

already associated vith this data pipe. The spin ID string is used to select which molecules, which residues, and
which atoms will be recognised as spin systems vithin relax. If the spin ID is left unspecified, then all molecules.
residues, and atoms will be placed within the data store (and all atoms will be treated as spins).

If averaging the atomic positions, then average position of all models will be loaded into the spin container.
Otherwise the positions from all models vill be loaded separately.

The spin D string -

The average pesition flag Tue >

o Back « Apply P next @ cancel

This is a bit more complicated. In this example we are studying the backbone dynamics
of 1°N spins of a protein. Therefore first set the spin ID string to “©N” (which can be
selected from the pull down) and click on “Apply” to set up the backbone spins. Do not
click on “Next” yet. If the current study requires the specification of the dipole-dipole
interaction (for example if it involves relaxation data — model-free analyses, consistency
testing, reduced spectral density mapping; or the dipolar coupling — the N-state model or
ensemble analyses, the Frame Order theory) you will also need to load the 'H spins as
well. Therefore set the spin ID string to “@H” and click on “Apply” again.

User functions (a-m) User functions (n-z)

Load spins Refresh Load spins - x

B vin <ystem information

< 1} Molecule: ApaAase,

@ Residue: 1 6Ly
& spini 10

@ Residue: 2 PRO
& spin: 11N

@ Residue: 3 LEU
& spin: 2610

@ Residue: 4 GLY
& spini 510

@ Residue: 5 SER
& spini 39

@ Residue: 6 MET
& spin: 710

@ Residue: 7 ASP
& spini 910

@ Residue: 8 SER
& spin: 1040

@ Residue: 9 PRO
& spin: 1161

@ Residue: 10 PRO
& spin: 133N

@ Residue: 11 GLU
& spin: 1500

@ Residue: 12 GLY
& spin: 1671

@ Residue: 13 TR
& spin: 1751

@ Residue: 14 ARG
& spin: 200

@ Residue: 15 ARG
& spin: 229

@ Residue: 16 ASN
& spin: 2581

@ Residue: 17 VAL
& spin: 2740

@ Residue: 18 GLY

Loading spins from structure.

The structure.load_spins user function

Load spins from the structure into the relax data store.

Description

¢ This allows a sequence to be generated within the relax data store using the atomic information from the structure

already associated vith this data pipe. The spin ID string is used to select which molecules, which residues, and
which atoms will be recognised as spin systems vithin relax. If the spin ID is left unspecified, then all molecules.
residues, and atoms will be placed within the data store (and all atoms will be treated as spins).

If averaging the atomic positions, then average position of all models will be loaded into the spin container.
Otherwise the positions from all models vill be loaded separately.

The spin D string @NEL

4

The average pesition flag Tue >

o Back « Apply P next @ cancel
3

Move to the next page

Now change the spin ID string to “@NE1” and then click on “Next” (or “Apply” if the
Trp protons “@HE1” need to be loaded as well). This will add spin containers for the
tryptophan indole ®N spins. Finally click on “Finish” to exit the wizard:

4.5. SETUP IN THE GUI 43

User functions (a-m) User functions (n-z)

Current data pipe: |origin - noe (Fri Aug 31| ¥

Load spins Refresh To5TSIE X
.
< 1} Molecule: ApaAase Spin loading complete
= @ Residue: 1 GLY.
& spinc1n The spin systems should now have been loaded into the relax data store.
~ ©® Residue: 2 PRO
& spin 1
= @ Residue: 3 LEU
& spin 28
© 0@ Residue: 4 GLY
& spincsin
= @ Residue: 5 SER
& spin:son
< 0@ Residue: 6 MET
& spin: 71N
< 5@ Residue: 7 ASP
& spinco1n
~ @ Residue: 8 SER
& spin: 1040
~ £ Residue: 9 PRO
@ spis 1160
= @ Residue: 10 PRO
& spin 1330
= @ Residue: 11 GLU
& spin 1500
= @ Residue: 12 GLY.
& spini 1670
< 0@ Residue: 13TYR
& spin 175
= @ Residue: 14 ARG
& spin: 200N
= @ Residue: 15 ARG
& spini229n
< +® Residue: 16 ASN Back « Finish @ cancel
& spin: 258 N ' Accept the operation
= @ Residue: 17 VAL
@ spini27an

< @ Residue: 18 GLY.

You should now see something such as:

The spin viewer -5 X
User functions (a-m) ~User functions (n-2)
Current data pipe: |origin - noe (Fri Aug 31 ¥
Load spins Refresh
@ Spin: 1459 N B
© 0@ Residue: 85 PRO 9 5
PR Spin container
= @ Residue: 86 PRO
& spin: 1500 N Molecule: Ap4Aase_new_3_moll
¥ 7@ Residue: 87 LYS Residue number: 96
& spin: 1517 N Residue name: TRP
< 0@ Residue: 88 VAL Spin number 1730
& spini 1544 Spin name: NEI
< @ Residue: 89 ARG Spin ID string #Ap4Aase_new_3_moll 96@NEI"

@ spin 15638
~ @ Residue: 90 GLU

@ spin 15928
v @ Residue: 91 LYS

Spin container contents

Variable Value Tpe
soini 1609 N lement N o
~ @ Residue: 92 LEU name NEL o
@ spin: 1636 N num 1730 int
v @ Residue: 93 ASN pos (2577, numpyndarray
& spin: 1650 N 7 -8.014,
v @ Residue: 94 ILE [-1502]
& spin 1675 select Tue bool
@ Residue; 95 GLN
@ spin: 1697

~ 5@ Residue: 96 TRP
& spinc 17171
» EEEEE
<~ @ Residue: 97 Aty
& spin 17210
~ 0@ Residue: 98 SER
& spin 17501
~ 5@ Residue: 99 ASP
@ spin: 17621
< 5@ Residue: 100 TR
& spin 1775
& spin: 1788 NEL
~ 5@ Residue: 101 1vs
& spin: 1600

If the 'H spins have been loaded as well, then you should see exactly twice as many spin
containers as shown above.

4.5.3 GUI mode — spins from a sequence file

Starting from the empty spin viewer window on page 40), click on the “Load spins” button.
You will then see the spin loading wizard (see page 41). Select the option for reading data
from a sequence file. You should then see:

44 CHAPTER 4. THE RELAX DATA MODEL

User functions (a-m) User functions (n-z)

Current data pipe: |origin - mf (Mon Sep 3 | &
Load spins Refresh

Load spins - X

ﬁ
‘ Sequence data reading.

The sequence.read user function

l Read the molecule, residue, and spin sequence from a file.
> Description
-
The spin system can be identified in the file using two different formats. The first is the spin ID string column which

can include the molecule name, the residue name and number. and the spin name and number. Alternatively the
molecule name, residue number, residue name, spin number andjor spin name columns can be supplied allowing

this information to be in separate columns. Note that the numbering of columns starts at one. The spin ID string

can be used to restrict the reading to certain spin types, for example only 15N spins when only residue information
is in the file

The file name: S|

X celectthe fle

The spin D string

Free format file settings
spin ID column =]
Molecule name column:

Residue number column:

1
2
Residue name column 3
Spin number column 4

s

Spin name column:

Column separator: white space -

o Back « Apply W skip P next @ cancel

Select the file to load and change the “Free format file settings” as needed. An example of
a suitable format is given on page 39. Click on “Next” to reach the wizard ending page
(see 43). Finally click on “Finish” to exit the wizard.

4.5.4 GUI mode — manual construction

Just as in the prompt/script Ul mode, the molecules, residues and spins can be manually
added. First add a molecule by right clicking on the “Spin system information” element and
selecting the relevant entry in the popup menu. Then right click on the newly created
molecule container to add residues, and right click on residue containers to add spins.

4.5.5 GUI mode — deselect spins

To deselect spins (for example if they are unresolved, overlapping peaks), click on the
“User functions—deselect—read” menu item from the main relax window or the spin viewer
window:

4.5. SETUP IN THE GUI

Fle View

@9 ('f. align_tensor
angles

. bmrb

= bruker

® calc

NOE 500

='e consistency_tests
dasha

* diffusion_tensor
 dipole_pair
A de
% eliminate
@ fix
% frame_order
w frg
5 grace
£ grid_search
01 jw_mapping
® minimise
5% model_free
{\2 model_selection
1 molecule
M molmol
% mER.E

Select the file listing the unresolved spins

aill = i

»
»
»
»

User functions (n-z) Tools Help

tup for steady-state NOE analysis

, data pipe bundie

) el

» interatom

b & rderse
% spin
ectra list

»

) g Add

pectrum ID string
yf
it

»

»
»
»

relax

noe (Fri Aug 31 21:53:18 2012)

aHz] 500

I

172 spins loaded and selected

= Delete

format file settings” GUI element as needed:

Fle View Userfunctions (a-m) User functions (n-z) Tools Help

°Q LHM 7 & ul=1a

NOE 500

Setup for steady-state NOE analysis

Deselecting spins from file.

() 2001-2012 the relax development team

NOE spectrum type

Reference
Saturated

Current data pipe

& X

£ Change
i# Spin editor

BB e relax

origin - noe (Fri Aug 31 21:53:18 2012)

and change the column numbers in the

Deselecting spins from file.

The deselect.read user function

Deselect the spins contained in a file,

Description

£ Change
Spin editor

The spin system can be identified in the file using two diferent formats. The first is the spin ID string column which
can include the molecule name, the residue name and number, and the spin name and number. Alternatively the
molecule name, residue number, residue name, spin number andjor spin name columns can be supplied allowing
this information to be in separate columns. Note that the numbering of columns starts at one. The spin ID string
can be used to restrict the reading to certain spin types, for example only 15N spins when only residue information |+

The fle name
The spin ID string
The boolean operator:
The change i

Free format file settings
spin 1D column

Molecule name column

Residue number column

Residue name column:

Spin number column:

Spin name column

Column separator:

19N 4-10-04/d: =8l
>

AND >

False v

1

2 \

white space >

« Apply « oK @ cancel

Current data pipe

Accept the operation

BB e relax

origin - noe (Fri Aug 31 21:53:18 2012)

45

“Free

Alternatively the spin editor window can be reopened and the spins manually deselected
by right clicking on them and selecting “Deselect”. Returning to the spin editor window,
you should now see certain spins coloured grey:

46

User functions (a-m) User functions (n-z)

CHAPTER 4. THE RELAX DATA MODEL

The spin viewer

Current data pipe: |origin - noe (Fri Aug 311 %

Load spins Refresh

¥ Spin system information

= {19 Molecule: ApaAase_new_3_moll

4.6 The next steps

@ Residue: 1 GLY
& spn1n

@ Residue: 2 PRO
& spin 110

@ Residue: 3 LEU
.

@ Residue: %61y
& spin 51

@ Residue: 5 SER
& spin s

@ Residue: 6 MET
& spin: 71N

@ Residue: 7 ASP
& spin o1

@ Residue: 8 SER
& spin: 100

@ Residue: 9 PRO
& spin: 116

@ Residue: 10 PRO
& spin: 1330

@ Residue: 11 GLU
& spin: 1500

@ Residue: 12 GLY
& spin: 1670

@ Residue: 13 TVR
& spin: 1750

@ Residue: 14 ARG
& spin: 200N

@ Residue: 15 ARG
& spin: 2200

@ Residue: 16 ASN
& spin: 2580

@ Residue: 17 VAL
& spin: 274

@ Residue: 18 GLY

Spin container

Molecule: ApdAase_new_3_moll
Residue number: 3

Residue name. LEU

Spin number. 28

Spin name: N

Spin ID string #Ap4Aase_new_3_moll:3@N'

Spin container contents

Variable Value
baseplane_rmsd {sat': 3000.0}
element N
intensities {ref: 83940,
‘sat: -4308.0}
2 name N
* um 28
pos [4.074,
6.099,
5.719]
select False

-3 X

R/

Type
dict
str
dict

str

int
numpyndarray

bool

This chapter presented the basics of setting up the relax data store, concepts which are
needed for all analysis types built into relax. The next chapters will introduce specific
analyses types — the steady-state NOE, R; and Rs relaxation curve-fitting, and the auto-
mated full model-free analysis protocol of d’Auvergne and Gooley (2007, 2008¢c) — which
build on the ideas introduced here.

Part 11

The specific analyses

47

Chapter 5

The R; and Ry relaxation rates —
relaxation curve-fitting

5.1 Introduction to relaxation curve-fitting

The fitting of exponentials to relaxation curves (relaxation curve-fitting or as used through-
out this chapter abbreviated simply as relax-fit) involves a number of steps including the
loading of data, the calculation of both the average peak intensity across replicated spectra
and the standard deviations of those peak intensities, selection of the experiment type,
optimisation of the parameters of the exponential curves during the fit for each observed
spin, Monte Carlo simulations to find the parameter errors, and saving and viewing the
results. To simplify the process a sample script will be followed step by step as was done
with the NOE calculation.

5.2 From spectra to peak intensities for the relaxation rates

The following subsections simply contain advice on how to go from the recorded FIDs to
the peak lists ready to be input into relax. This need not be followed — it is simply a set
of recommendations for obtaining the highest quality relaxation rates.

49

50 CHAPTER 5. RELAXATION CURVE-FITTING

5.2.1 Temperature control and calibration

Before starting with the spectral processing, it should be noted that proper temperature
control and calibration are essential for relaxation data. Small temperature changes can
have an effect on the viscosity and hence global tumbling of the molecule being studied
and, as the molecular diffusion tensor is the major contributor to relaxation, any non-
consistent data will likely lead to artificial motions appearing in subsequent model-free
analyses.

Per-experiment temperature calibration is essential and the technique used will need to
be specified for BMRB data deposition. Note that the standard MeOH /ethylene glycol
calibration of a spectrometer is of no use when you are running experiments which pump in
large amounts of power into the probe head. Although the R1 experiment should be about
the same temperature as a HSQC and hence be close to the standard MeOH /ethylene glycol
spectrometer calibration, the R2 CPMG or spin lock and, to a lesser extent, the NOE pre-
saturation pump a lot more power into the probe head. The power differences can either
cause the temperature in the sample to be too high or too low. This is unpredictable as
the thermometer used by the VT unit is next to the coils in the probe head and not inside
the NMR sample. So the VT unit tries to control the temperature inside the probe head
rather than in the NMR sample. However between the thermometer and the sample is the
water of the sample, the glass of the NMR tube, the air gap where the VT unit controls
air flow and the outside components of the probe head protecting the electronics. If the
sample, the probe head or the VT unit is changed, this will have a different affect on the
per-experiment temperature. The VT unit responds differently under different conditions
and may sometimes over or under compensate by a couple of degrees. Therefore each
relaxation data set from each spectrometer requires a per-experiment calibration.

Explicit temperature control techniques are also essential for relaxation data collection.
Again the technique used will be asked for by relax for BMRB data deposition. A num-
ber of factors can cause significant temperature fluctuations between individual relaxation
experiments. This includes the daily temperature cycle of the room housing the spectrom-
eter, different amounts of power for the individual experiments, etc. The best methods
for eliminating such problems are single scan interleaving and temperature compensation
block. Single scan interleaving is the most powerful technique for averaging the tempera-
ture fluctuations not only across different experiments, but also across the entire measure-
ment time. The application of off-resonance temperature compensation blocks at the start
of the experiment is useful for the R2 and will normalise the temperature between the
individual experiments, but single scan or single fid interleaving is nevertheless required
for normalising the temperature across the entire measurement.

5.2.2 Spectral processing

For the best measurement of peak heights across the myriad of NMR spectral analysis
software, it is recommend to zero fill a lot — 8k to 16k would give the best results. This
does not increase the information content of the spectrum or decrease the errors, it simply
interpolates. Even if the NMR spectral software performs 3-point quadratic interpolation

5.2. FROM SPECTRA TO PEAK INTENSITIES FOR THE RELAXATION RATES51

Table 5.1: Summary, First Point Scaling and Phase Correction
Delay P1 FID Spectrum
0 point 0 Scale -¢ 0.5

1/2 point 180 Scale -c 1.0 Folded peaks have opposite sign
1 point 360 Scale -¢c 1.0 Use “POLY -auto -ord 0”

between the highest points to determine the peak height, the additional free interpolation
will make the estimation more accurate.

Additionally, care must be taken to properly scale the first point as this can cause a
baseline roll which will affect peak heights. A very useful description comes directly from
the NMRPipe manual:

Depending on the delay, the first point of the FID should be adjusted before
Fourier Transform. The first point scaling factor is selected by the window
function argument -c.

If the required first order phase P1 for the given dimension is 0.0, the first
point scaling factor should be 0.5. This is because the discrete Fourier trans-
form does the equivalent of counting the point at t=0 twice. If the first point
is not scaled properly in this case, ridge-line baseline offsets in the spectrum
will result.

In all other cases (P1 is not zero), this scale factor should be 1.0. This
is because the first point of the FID no longer corresponds to t=0, and so it
shouldn’t be scaled. If the scale factor is not set correctly, it will introduce a
baseline distortion which is either zero-order or sinusoidal, depending on what
first-order phase is required. When possible, it is best to set up experiments
with either exactly 0, 1/2, or 1-point delay. There are several reasons:

e Phase correction values can be determined easily.

e If the delay is not a multiple of 1/2 point, the phase of folded peaks will
be distorted.

e The Hilbert transform (HT) is used, sometimes automatically, to recon-
struct previously deleted imaginary data for interactive rephasing or in-
verse processing. But, the HT can only reconstruct imaginary data per-
fectly if the phase is a multiple of 1/2 point.

e Data with P1 = 360 have the first point t=0 missing (i.e. 1 point delay).
Since the first point of the FID corresponds to the sum of points in the
corresponding spectrum, this missing first point can be “restored” by
adding a constant to the phased spectrum. This can be done conveniently
by automated zero-order baseline correction, as shown in table 5.1.

Here is an example NMRPipe script designed for optimal relaxation rate extraction:

#!/bin/csh

setenv FILEROOT $1

http://spin.niddk.nih.gov/NMRPipe/doc1/

52 CHAPTER 5. RELAXATION CURVE-FITTING

set PHASE=81.4

echo "\n# Fourier Transform (nmrPipe fid/*.fid to ft/x.dat)"
echo "# t2 phase is set to $PHASE"
echo "# t1 phase is set to 0.0\n"

nmrPipe -in fid/$FILEROOT.fid \

nmrPipe -fn SOL \

nmrPipe -fn GM -gi 15 -g2 20 -c 0.5 \

nmrPipe -fn ZF -size 8192 \

nmrPipe -fn FT -auto \

nmrPipe -fn PS -pO $PHASE -pl 0.0 -di -verb \
nmrPipe -fn TP \

nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 -c 0.5 \
nmrPipe -fn ZF -size 8192 \

nmrPipe -fn FT -auto \

nmrPipe -fn PS -p0 0.0 -pl 0.0 -di -verb \
nmrPipe -fn TP \

nmrPipe -fn POLY -auto \

nmrPipe -fn EXT -left -sw \

nmrPipe -out ft/$FILEROOT.dat -ov

|
|
|
|
|
|
|
|
|
|
|
|
|
|
The script is run by suppling the FILEROOT value as a command line option so if the
script is called nmrpipe.sh and the var2pipe or bruk2pipe processed file R1 ncyc4.fid
is in the fid directory, you would run:

$./nmrpipe.sh Rl_ncyc4d

The ft directory must exist for this script to execute. Different experiment specific options
may be needed such as:
| nmrPipe -fn REV \

| nmrPipe -fn FT -neg \
| nmrPipe -fn PS -rs 2.5 \

The script should be changed for different phasing, first point scaling, a polynomial base-
line correction added in the direct dimension or removed from the indirect dimension,
solvent suppression removed or changed, and the window functions modified for optimal
spectral quality. Each system and spectrum is different, so it is recommended that to find
the optimal processing that each part of the script be removed and re-added one-by-one
between processing and checking of the resultant spectrum. Note that the extraction at
the end after the polynomial baseline correction in the indirect dimension is important as
the baseline correction often displays a much better performance when the empty part of
the spectrum is used in the calculation.

5.2.3 Measuring peak intensities

For the measurement of peak intensities, again care must be taken. A read of the paper:

e Viles, J., Duggan, B., Zaborowski, E., Schwarzinger, S., Huntley, J., Kroon, G.,
Dyson, H., and Wright, P. (2001). Potential bias in NMR relaxation data introduced
by peak intensity analysis and curve fitting methods. J. Biomol. NMR, 21, 1-9.
(10.1023/A:1011966718826)

http://dx.doi.org/10.1023/A:1011966718826

5.3. RELAXATION CURVE-FITTING IN THE PROMPT/SCRIPT UI MODE 53

is highly recommended. Despite the recommendations in the discussion of this paper, a
different methodology using peak heights can be used to solve the same problems. This
will be discussed in a paper which is currently in preparation from the Gooley group. The
steps involved are:

e For the first spectrum in the time series, shift the peak list to the tops of the peaks
(for example using “pc” in Sparky on subsets of peaks).

e Copy this 15 spectrum list onto all spectra, shifting the peaks to the top as in the
previous step.

e When the peak disappears into the noise, leave it at its current position and do not
type “pc” or equivalent. This will add weight to the first point in the subsequent
step.

e Once all spectra are shifted, calculate an average peak list.
e Copy this average peak list onto fresh copies of all spectra.

e Measure peak heights using this averaged peak list.

This will produce the most accurate peak intensity measurements until better, more robust
peak shape integration comes along. This is a special technique which is designed to
minimise the white-noise bias talked about in the Viles et al. (2001) paper. As the noise
often decreases with the decrease in total spectral power, using the tops of the peaks means
that you are actually measuring the real peak height plus positive noise in all cases. This
non-constant additional positive noise contribution can result in a double exponential in
the measured data. The technique above eliminates this as you then measure close to
real peak height with the addition of white noise centred at zero — it is both negative and
positive to equal amounts — rather than the peak high with noise contribution strongly
biased towards the positive. Where the peaks disappear, you then are measuring the pure
baseplane noise. This is fine as these white-noise data points centred at zero will help in
the subsequent exponential fit in relax.

If using Sparky then, to be sure that the peak heights are properly updated, for each
spectrum type “pa” to select all peaks, “ph” to update all selected peak heights, “It” to
show the spectrum peaks window, make sure “data height” is selected in the options, and
then save the peak list.

5.3 Relaxation curve-fitting in the prompt/script UI mode

5.3.1 Relax-fit script mode — the sample script

The following is a verbatim copy of the contents of the sample_scripts/relax fit.py
file. If your copy of the sample script is different than that below, please send an email to
the relax-devel mailing list to tell the relax developers that the manual is out of date (see
section 3.2.3 on page 30). You will need to first copy this script to a dedicated analysis
directory containing peak lists, a PDB file and a file listing unresolved spin systems, and
then modify its contents to suit your specific analysis. The script contents are:

54 CHAPTER 5. RELAXATION CURVE-FITTING

Script for relaxation curve-fitting.

Create the 'rx' data pipe.
pipe.create('rx', 'relax_fit')

Load the backbone amide 15N spins from a PDB file.
structure.read_pdb ('Ap4Aase_new_3.pdb')
structure.load_spins (spin_id='0@N")
structure.load_spins (spin_id='G@NE1')

Spectrum names.

names = [
'T2_ncycl_ave',
'T2_ncyclb_ave',
'T2_ncyc2_ave',
'T2_ncyc4_ave',
'T2_ncyc4b_ave',
'T2_ncyc6_ave',
'T2_ncyc9_ave',
'T2_ncyc9b_ave',
'T2_ncycll_ave',
'T2_ncycllb_ave'

Relaxation times (in seconds).
times = [
.0176,
.0176,
.0352,
.0704,
.0704,
.1056,
.15684,
.1584,
.1936,
.1936

O O O O OO OO OoOOo

Loop over the spectra.

for i in range(len(names)):
Load the peak intensities.
spectrum.read_intensities (file=names[i]+'.list', dir=data_path, spectrum_id=names[i],
int_method='height')

Set the relaxation times.
relax_fit.relax_time (time=times[i], spectrum_id=names[i])

Specify the duplicated spectra.

spectrum.replicated (spectrum_ids=['T2_ncycl_ave', 'T2_ncyclb_ave'])
spectrum.replicated (spectrum_ids=['T2_ncyc4_ave', 'T2_ncycdb_ave'])
spectrum.replicated (spectrum_ids=['T2_ncyc9_ave', 'T2_ncyc9b_ave'])
spectrum.replicated (spectrum_ids=['T2_ncycll_ave', 'T2_ncycllb_ave'])

Peak intensity error analysis.
spectrum.error_analysis ()

Deselect unresolved spins.
deselect.read (file='unresolved', mol_name_col=1, res_num_col=2, res_name_col=3,

spin_num_col=4, spin_name_col=5)

Set the relaxation curve type.

5.3. RELAXATION CURVE-FITTING IN THE PROMPT/SCRIPT UI MODE 55

relax_fit.select_model('exp')

Grid search.
grid_search(inc=11)

Minimise.
minimise('simplex', scaling=False, constraints=False)

Monte Carlo simulations.

monte_carlo.setup (number=500)
monte_carlo.create_data()
monte_carlo.initial_values ()

minimise('simplex', scaling=False, constraints=False)
monte_carlo.error_analysis ()

Save the relaxation rates.
value.write(param='rx', file='rx.out', force=True)

Save the results.
results.write(file='results', force=True)

Create Grace plots of the data.

grace.write(y_data_type='chi2', file='chi2.agr', force=True) # Minimised chi-squared
value.

grace.write(y_data_type='i0', file='iO.agr', force=True) # Initial peak intensity.

grace.write(y_data_type='rx', file='rx.agr', force=True) # Relaxation rate.

grace.write(x_data_type=‘relax_times', y_data_type='peak_intensity', file='intensities.agr
', force=True) # Average peak intensities.

grace.write(x_data_type=‘relax_times', y_data_type='peak_intensity', norm=True, file='
intensities_norm.agr', force=True) # Average peak intensities (normalised).

Display the Grace plots.
grace.view(file='chi2.agr')
grace.view(file='i0.agr')
grace.view(file='rx.agr')
grace.view(file='intensities.agr')
grace.view(file='intensities_norm.agr')

Save the program state.
state.save('rx.save', force=True)

The next sections will break this script down into its logical components and explain how
these parts will be interpreted by relax. To execute this script, please see section 1.2.8 on
page 11 for details.

5.3.2 Relax-fit script mode — initialisation of the data pipe

The data pipe is simply created by the command

Create the 'rx' data pipe.
pipe.create('rx', 'relax_fit')

This user function will then create a relaxation exponential curve-fitting specific data
pipe labelled “rx”. The second argument sets the pipe type to that of the relaxation
curve-fitting. Setting the pipe type is important so that the program knows which user
functions are compatible with the data pipe, for example in the steady-state NOE analysis

o6 CHAPTER 5. RELAXATION CURVE-FITTING

the function minimise (see page 375) is meaningless as the NOE values are calculated
directly rather than optimised.

5.3.3 Relax-fit script mode — setting up the spin systems

The first thing which needs to be completed prior to any spin specific command is to
generate the molecule, residue and spin data structures for storing the spin specific data.
In the sample script above this is generated from a PDB file, however a plain text file with
the sequence information can be used instead (see the sequence.read user function on
page 479 for more details). In the case of the sample script, the command

Load the backbone amide 15N spins from a PDB file.
structure.read_pdb (name, 'Ap4Aase_new_3.pdb')

will load the PDB file Ap4Aase new_3.pdb into relax. Then

structure.load_spins (spin_id='@N")
structure.load_spins (spin_id='GQNE1')

will generate the molecule, residue, and spin sequence for the current data pipe. In this
situation there will be a single spin system per residue generated corresponding to the
backbone amide nitrogens as well as '°N spins set up for the tryptophan indole nitrogens.
Although the 3D coordinates have been loaded into the program from the PDB file, this
structural information serves no purpose when calculating Ry and Ry values.

5.3.4 Relax-fit script mode — loading the data

To load the peak intensities into relax the spectrum.read_intensities and relax fit.
relax_times user functions are executed. Important keyword arguments for these user
functions are the file name and directory, the spectrum identification string and the re-
laxation time period of the experiment in seconds. By default the file format will be
automatically detected. Currently Sparky, XEasy, NMRView, and generic columnar for-
matted peak lists are supported. To be able to import any other type of format please
send an email to the relax development mailing list with the details of the format. Adding
support for new formats is trivial. The following series of commands — an expansion of
the for loop in the sample script — will load peak intensities from six different relaxation
periods, four of which have been duplicated, from Sparky peak lists with the peak heights
in the 10" column.

spectrum.read_intensities ('T2_ncycl.list', spectrum_id='1', int_col=10)
relax_fit.relax_time (spectrum_id='1', time=0.0176)
spectrum.read_intensities ('T2_ncyclb.list', spectrum_id='1b', int_col=10)
relax_fit.relax_time (spectrum_id='1b', +time=0.0176)
spectrum.read_intensities ('T2_ncyc2.list', spectrum_id='2"', int_col=10)
relax_fit.relax_time (spectrum_id='2", time=0.0352)
spectrum.read_intensities ('T2_ncyc4.list', spectrum_id='4"', int_col=10)
relax_fit.relax_time (spectrum_id='4', time=0.0704)
spectrum.read_intensities ('T2_ncyc4b.list', spectrum_id='4b', int_col=10)
relax_fit.relax_time (spectrum_id='4b', +time=0.0704)
spectrum.read_intensities ('T2_ncyc6.list', spectrum_id='6"', int_col=10)
relax_fit.relax_time (spectrum_id='6", time=0.1056)

spectrum.read_intensities ('T2_ncyc9.list', spectrum_id='9', int_col=10)

5.3. RELAXATION CURVE-FITTING IN THE PROMPT/SCRIPT UI MODE

relax_fit.relax_time (spectrum_id='9',
spectrum.read_intensities ('T2_ncyc9b.list',
relax_fit.relax_time(spectrum_id='9b',
spectrum.read_intensities ('T2_ncycil.list',
relax_fit.relax_time (spectrum_id='11",

time=0.1584)
spectrum_id='9b', int_col=10)
time=0.1584)
spectrum_id='11', int_col=10)
time=0.1936)

spectrum.read_intensities ('T2_ncyclib.list', spectrum_id='11b', int_col=10)

relax_fit.relax_time (spectrum_id='11b', time=0.1936)

The replicated spectra a set up with the commands

Specify the duplicated spectra.

spectrum
spectrum.
spectrum.
spectrum.

.replicated(spectrum_ids=['T2_ncycl_ave', 'T2_ncyclb_ave'])
replicated (spectrum_ids=['T2_ncyc4_ave', 'T2_ncycdb_ave'])
replicated (spectrum_ids=['T2_ncyc9_ave', 'T2_ncyc9b_ave'])
replicated (spectrum_ids=['T2_ncycll_ave', 'T2_ncyclib_ave'])

57

Note that the relaxation time period should be calculated directly from the pulse sequence
(as the sum of delays and pulses for the period), as the estimated time may not match the
real time. For the Sparky peak lists, by default relax assumes that the intensity value is
in the 4" column. A typical file looks like:

Assignment

LEU3N-HN
GLY4N-HN
SERSN-HN
MET6N-HN
ASP7N-HN
SER8SN-HN
GLU11N-HN
GLY12N-HN

122.
111.
115.
120.
122.
113.
122.
110.

wl

454
999
085
934
394
916
194
525

w2

.397
.719
.176
.812
.750
.836
.604
.028

© 00 ~N 00 0 0 0 00

Data Height

129722
422375
384180
272100
174970
218762

30412

90144

By supplying the int_col argument to the spectrum.read intensities user function, this

can be changed. A typical XEasy file will look like:

No.

N

17
18
19
20

Color w

10.
10.

10.

WNNNDNDN
[0

1

014
481

.882
.757

086

.111

134.
132.
129.
128.
128.
127.

w2

221
592
041
278
297
707

ass.

HN
HE1
HN
HN
HN
HN

in wil

21 LEU
79 TRP
110 PHE
52 ASP
69 SER
15 ARG

ass. in w2

N 21
NE1 79
110

52
69
15

LEU
TRP
PHE
ASP
SER
ARG

Volume

O ON O~

.919e+03
.532e+04
.962e+03
.041e+04
.305e+03
.714e+03

Vol. Err.

(el el lNeNeNe]

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

Method Comment

888888

where the peak height is in the Volume column. And for an NMRView file:

label dataset sw sf

H1 N15

cNTnC_noe0.nv

2505.63354492 1369.33557129

499.875 50.658000946
H1.L H1.P H1.W H1.B H1.E H1.J H1.U N15.L N15.P N15.W N15.B N15.E N15.J N15.U vol int stat comment flag0
0 {70.HN} 10.75274 0.02954 0.05379 ++ 0.0 {} {70.N} 116.37241 0.23155 0.35387 ++ 0.0 {} -6.88333129883 -0.1694 0 {} 0
1 {72.HN} 9.67752 0.03308 0.05448 ++ 0.0 {} {72.N} 126.41302 0.27417 0.37217 ++ 0.0 {} -5.49038267136 -0.1142 0 {} 0

2 {} 8.4532 0.02331 0.05439 ++ 0.0 {} {} 122.20137 0.38205 0.33221 ++ 0.0 {} -2.58034267191 -0.1320 0 {} O

o8 CHAPTER 5. RELAXATION CURVE-FITTING

5.3.5 Relax-fit script mode — the rest of the setup

Once all the peak intensity data has been loaded a few calculations are required prior to
optimisation. Firstly the peak intensities for individual spins needs to be averaged across
replicated spectra. The peak intensity errors also have to be calculated using the standard
deviation formula. These two operations are executed by the user function

Peak intensity error analysis.
spectrum.error_analysis ()

Any spins which cannot be resolved due to peak overlap were included in a file called
unresolved. This file can consist of optional columns of the molecule name, the residue
name and number, and the spin name and number. The matching spins are excluded from
the analysis by the user function

Deselect unresolved spins.

deselect.read (file='unresolved', mol_name_col=1, res_num_col=2, res_name_col=3,
spin_num_col=4, spin_name_col=5)

Finally the experiment type is specified by the command

Set the relaxation curve type.
relax_fit.select_model ('exp')

The argument “exp” sets the relaxation curve to a two parameter {R,, Ip} exponential
which decays to zero. The formula of this function is

I(t) = Iye R, (5.1)

where I(t) is the peak intensity at any time point ¢, Ij is the initial intensity, and R, is
the relaxation rate (either the R; or Ry). Changing the user function argument to “inv”
will select the inversion recovery experiment. This curve consists of three parameters {Ry,
Iy, I} and does not decay to zero. The formula is

I(t) = I, — Iye R, (5.2)

5.3.6 Relax-fit script mode — optimisation of exponential curves

Now that everything has been setup minimisation can be used to optimise the parameter
values. Firstly a grid search is applied to find a rough starting position for the subsequent
optimisation algorithm. Eleven increments per dimension of the model (in this case the
two dimensions {R,, Iy}) is sufficient. The user function for executing the grid search is

Grid search.
grid_search(inc=11)

The next step is to select one of the minimisation algorithms to optimise the model pa-
rameters. Currently for relaxation curve-fitting only simplex minimisation is supported.
This is because the relaxation curve-fitting C module is incomplete only implementing the
chi-squared function. The chi-squared gradient (the vector of first partial derivatives) and
chi-squared Hessian (the matrix of second partial derivatives) are not yet implemented in
the C modules and hence optimisation algorithms which only employ function calls are

5.3. RELAXATION CURVE-FITTING IN THE PROMPT/SCRIPT UI MODE 59

supported. Simplex minimisation is the only technique in relax which fits this criterion. In
addition constraints cannot be used as the constraint algorithm is dependent on gradient
calls. Therefore the minimisation command for relaxation curve-fitting is forced to be

Minimise.
minimise('simplex', constraints=False)

5.3.7 Relax-fit script mode — error analysis

Only one technique adequately estimates parameter errors when the parameter values
where found by optimisation — Monte Carlo simulations. In relax this can be implemented
by using a series of functions from the monte_carlo user function class. Firstly the number
of simulations needs to be set

Monte Carlo simulatioms.
monte_carlo.setup (number=500)

For each simulation, randomised relaxation curves will be fit using exactly the same
methodology as the original exponential curves. These randomised curves are created
by back calculation from the fitted model parameter values and then each point on the
curve randomised using the error values set earlier in the script

monte_carlo.create_data()

As a grid search for each simulation would be too computationally expensive, the starting
point for optimisation for each simulation can be set to the position of the optimised
parameter values of the model

monte_carlo.initial_values ()

Then exactly the same optimisation as was used for the model can be performed

minimise('simplex', constraints=False)

The parameter errors are then determined as the standard deviation of the optimised
parameter values of the simulations

monte_carlo.error_analysis ()

5.3.8 Relax-fit script mode — finishing off

To finish off, the script first saves the relaxation rates together with their errors in a simple
text file

Save the relaxation rates.
value.write(param='rx', file='rx.out', force=True)

Grace plots are created and viewed

Create Grace plots of the data.

grace.write(y_data_type='chi2', file='chi2.agr', force=True) # Minimised chi-squared
value.

grace.write(y_data_type='i0', file='iO.agr', force=True) # Initial peak intensity.

60 CHAPTER 5. RELAXATION CURVE-FITTING

grace.write(y_data_type='rx', file='rx.agr', force=True) # Relaxation rate.
grace.write(x_data_type='relax_times', y_data_type='peak_intensity', file='intensities.agr
', force=True) # Average peak intensities.

grace.write(x_data_type='relax_times', y_data_type='peak_intensity', norm=True, file='
intensities_norm.agr', force=True) # Average peak intensities (normalised).

and viewed

Display the Grace plots.
grace.view(file='chi2.agr')
grace.view(file='i0.agr"')
grace.view(file='rx.agr')
grace.view(file='intensities.agr')
grace.view(file='intensities_norm.agr')

and finally the program state is saved for future reference

Save the program state.
state.save(file='rx.save', force=True)

5.4. THE RELAXATION CURVE-FITTING AUTO-ANALYSIS IN THE GUI 61

5.4 The relaxation curve-fitting auto-analysis in the GUI

The R; and Ry relaxation rates can be calculated using the relax GUI (see Figures 1.6
and 1.7). These auto-analyses can be selected using the analysis selection wizard (Fig-
ure 1.4 on page 12). Just as with the steady-state NOE in the next chapter, these auto-
analyses are very similar in spirit to the sample script described in this chapter, though
the Grace 2D visualisation is more advanced. If you have read this chapter, the usage of
these analyses should be self explanatory.

As in the script /prompt UI section above, the example of protein 1N R; relaxation analysis
will be performed in the following sections. To keep track of all the messages relax produces
for future reference, you can run the relax GUI with the following command line arguments:

$ relax --log log --gui

The messages will then appear both in the relax controller window (see Figure 1.9 on
page 19) and in the log file.

5.4.1 Relax-fit GUI mode — initialisation of the data pipe

To begin the analysis, launch the analysis selection wizard (see Figure 1.4 on page 12).
Select either the Ry or Ry analyses, and change the name of the analysis if you plan on
running multiple analyses from different field strengths in one relax instance.

LAt N R
= . .
§ A

' R relaxation curve-fitting analysi

-3

The name of the new analysis

Then click on the “Next” button. On the second page click on “Start” to commence the
analysis — this second part of the wizard does not need to be changed. For the R; and
Ro analyses in the GUI, a data pipe bundle containing only a single data pipe for that
analysis will be created. This data pipe bundle can be safely ignored.

62 CHAPTER 5. RELAXATION CURVE-FITTING

Analysis selection wizard

Data pipe set up

Select the name of the data pipe used at the start of the analysis and the name of the data
pipe bundle to be associated with this analysis. Al data in relax is kept within a special
structure known as the relax data store. This store is composed of multiple data pipes.
each being associated with a specific analysis type. Data pipe bundles are simple groupings
of the pipes within the data store and each analysis tab is coupled to a specific bundle.

simple analyses such as the steady-state NOE and the R1 and R2 curve-fitting will be
located within 2 single data pipe. More complex analyses such as the automated
model-free analysis vill be spread across multiple data pipes, internally created by forking
the original data pipe which holds the input data. all grouped together within a single bundle.

The initialisation of a new analysis will call the pipe.create user function with the pipe name
and pipe bundle as given below,

The starting data pipe for the analysis origin - 1 (Tue Sep 4 15:47:36 2012)

The data pipe bundle: 11 (ue sep 4 15:47:36 2012)

o Back m;n_] @ cancel

Accept the operation

5.4.2 Relax-fit GUI mode — general setup

You will now be presented with a blank analysis tab:

relax repository checkout
Fle View Userfunctions (a-m) User functions (n-z) Tools Help

9°Q BHMA 7 #F.ul=1a

RI 600

E Setup for R1 relaxation analysis
The data pipe bundle: r1 (Tue Sep 4 15:47:36 2012)
NMR frequency label [MHz]
Results directory T1.600.2004-11-02/d: I | & change |
Spin systems 0 spins loaded and selected | # spin editor|

Spectra list

Spectrum ID string

< ¥ Y Grid search increments: a1
Monte Carlo simulation number: |s00
TN x x

BB, e relax

[(€) 2001-2012 the relax development team [current data pipe: origin - r1 (Tue Sep 4 15:47:36 2012)

Here there are two things unique to the GUI which need to be preformed:

NMR frequency label: First set the NMR frequency label. This is only used for
the name of the output file. For example if you set the label to “1200”, the file
r1.1200.0ut will be created at the end of the analysis.

Results directory: All of the automatically created results and Grace files will be placed
into this directory. The “Results directory” can now be changed.

5.4. THE RELAXATION CURVE-FITTING AUTO-ANALYSIS IN THE GUI 63

5.4.3 Relax-fit GUI mode — setting up the spin systems

As the relaxation data is at the level of the spins, the molecule, residue and spin data
structures need to be set up. In the R; and Ry GUI analysis tabs, there is a special “Spin
systems” GUI element designed for this. This will initially say “0 spins loaded and selected”.
Click on the “Spin editor” button to launch the spin viewer window. The steps for setting
up the spin containers using PDB files are described in section 4.5.2 on page 40 or for
sequence files in section 4.5.3 on page 43.

5.4.4 Relax-fit GUI mode — unresolved spins

As in the prompt/script Ul section 5.3.5, the spins can be deselected at this point using
the same unresolved file. This is described in detail in section 4.5.5 on page 44.

5.4.5 Relax-fit GUI mode — loading the data

At this stage, the peak intensity data needs to be loaded. In both the Ry and Ry analysis
tabs is a “Spectra list” GUI element. Click on the “Add” button to launch the peak intensity
loading wizard:

Fle View Userfunctions (a-m) User functions (n-z) Tools Help

°Q LHM 7 & ul=1ia

R1 600

Set up the R1 peak intensities

Peak intensity reading.

" The spectrum.read_intensities user function
4] B Change

Read peak intensities from file. # Spin editor

" Description

“ The peak intensity can either be from peak heights or peak volumes

The file name: 600.2004-11-02/data-analysis/T1_ncyc2_ave list |3 Al

ncyc2

N

HN

The peak integration method: height

0«

The intensity column:
The spin ID string:
The Bruker ncproc parameter:

Free format file settings
spin ID column =]

1
2
3
2

H

Column separator. white space -

& Apply W skip P next @ cancel
Apply the operation

() 2001-2012 the relax development team Current data pipe: origin - r1 (Tue Sep 4 15:47:36 2012)

In this example, a Sparky peak list containing the peak heights determined from the
averaged chemical shift positions for all spectra will be loaded. Set the spectrum ID string
to a unique value. Click on “Next”. This will most likely cause a RelaxWarning message
to appear for all peak list elements which do not correspond to any spins loaded into the
relax data store:

64 CHAPTER 5. RELAXATION CURVE-FITTING

File View Userfunctions (a-m) User functions (n-z) Tools Help

9°Q BHHM 7 Ful=1a

R1600

The relax controller

1 B change
Spin editor
| Current GUI analysis R1 600
Current data pipe origin - 1 (Tus Sep 4 15:47:36 2012) 3
z z Monte Carlo simulations ist| (@] (8L

0«

ing the data ['ASNS12ND2-HD22', '113.256", '

The following intensif

#Spin 1D Intensity

1069203.0

sen 1535557.0

sen s27625.0

e aar01.0 -

sen 1030086.0

1260 467625.0 E

I —————— » @ cancel
BB e el

(C) 2001-2012 the relax development team Current data pipe: origin - 1 (Tue Sep 4 15:47:36 2012)

These messages must be carefully checked to be sure that the correct data has been loaded.
A RelaxError might be thrown if the peak list is corrupted or if the dimension has been
incorrectly given. In this case check the message, go “Back”, fix the problem, and click on
“Next” again. Then click on “Next”. You should now see the error type page:

-
File View Userfunctions (a-m) User functions (n-z) Tools Help

9°Q BHM 7 Ful=1a

RL 600
Set up the R1 peak intensities. - x
Specify the type of error to be used
Please speciy from where the peak intensity errors will be obtained. The is required for the execution of the
spectrum error_analysis user function which il be postponed untilafter clicking on the 'Execute relax' button at the 5 change
end of the automatic analysis page. To understand how the errors will be propagated and analysed, the main parts % spin editor
of the spectrum.error_analysis user function description are given below:

Description

This user function must only be called after all peak intensities have been loaded and all other necessary spectral
information set. This includes the baseplane RMSD and the number of points used in volume integration, both of
which are only used if spectra have not been replicated

Six different types of error analysis are supported depending on whether peak heights or volumes are supplied,
whether noise is determined from replicated spectra or the RMSD of the baseplane noise, and whether al spectra
or only a subset have been duplicated. These are:

Baseplane RMSD

o [Replicated spectra

4 Back P Next @ cancel

BB ccite relax

() 2001-2012 the relax development team Current data pipe origin - r1 (Tue Sep 4 15:47:36 2012)

The description for this wizard page should be very carefully read — it will tell you about
all of the error analysis options available and how these are implemented in relax. For the
protein relaxation example, replicated spectra have been collected. Therefore the option

“Replicated spectra” will be chosen. The “Baseplane RMSD” option is documented in the
NOE chapter. After clicking on “Next” you will see:

5.4. THE RELAXATION CURVE-FITTING AUTO-ANALYSIS IN THE GUI 65

Fle View User functions (a-m) User functions (n-2) Tools Help
°°Q WHM 7 & ul=1ia
RT 600

Set up the R1 peak intensities - X

Replicate spectra.

The spectrum.replicated user function

B Change
Specify which spectra are replicates of each other. # spin edtor

Description

This is used to identify which of the loaded spectra are replicates of each other. Specifying the replicates is
essential for error analysis if the baseplane RMSD has not been supplied.

The spectrum ID strings

44

o Back « Apply W skip P rext @ cancel

Skip the operation

BB e relax

() 2001-2012 the relax development team Current data pipe: origin - r1 (Tue Sep 4 15:47:36 2012)

For the first of the duplicate spectra, or any spectrum without a duplicate, you can click
on the “Skip” button. If this is the second spectrum you have loaded from a duplicated
set, select the two replicated spectra and then click on “Next”:

Fle View User functions (a-m) User functions (n-2) Tools Help
°°Q WHM 7 & ul=1ia
RT 600

Set up the R1 peak intensities - X

Replicate spectra.

The spectrum.replicated user function

B Change
Specify which spectra are replicates of each other. # spin edtor

Description

This is used to identify which of the loaded spectra are replicates of each other. Specifying the replicates is
essential for error analysis if the baseplane RMSD has not been supplied.

The spectrum ID strings neyc2

4@

neyezb

o Back « Apply W skip P rext @ cancel

Move to the next page

BB e relax

() 2001-2012 the relax development team Current data pipe: origin - r1 (Tue Sep 4 15:47:36 2012)

Finally set the relaxation time period for this experiment in seconds:

66 CHAPTER 5. RELAXATION CURVE-FITTING

File View Userfunctions (a-m) User functions (n-z) Tools Help

9°Q BHM 7 Ful=1a

R1600

Set up the R1 peak intensities

‘}
| I ‘\‘ |
1 The relax_fit.relax_time user function

Set the relaxation delay time associated with each spectrum.

Description

The relaxation time:

- X
Relaxation delay time setting.
5 change
Spin editor

Peak intensities should be loaded before calling this user function via the spectrum.read_intensities user function
The intensity values will then be associated with a spectrum identifier. To associate each spectrum identifier with a
time point in the relaxation curve prior to optimisation, this user function should be called

0010834

neyc2 >

The spectrum identification string:

() 2001-2012 the relax development team

o Back « Apply « Finish @ cancel

Accept the operation

BB e el

Current data pipe origin - r1 (Tue Sep 4 15:47:36 2012)

All delays and pulse lengths in the pulse sequence should be carefully checked to be sure
that the time is exactly what you would expect — the estimated time may not match the
real time. To set the time and close the wizard, click on the “Finish” button.

This procedure should be repeated for every experiment you have collected (you could, as
an alternative, load all at the same time using the “Apply” button at each stage). In the

end you should see something such as:

relax repository checkout

-3 X
File View Userfunctions (a-m) User functions (n-z) Tools Help
9°Q BHHM 7 Ful=1a
TRe00|
L \} “ Setup for R1 relaxation analysis
| "j‘"‘ Il } The data pipe bundle: r1(Tue Sep 4 15:47:36 2012)
S tS NMR frequency label [MHz] 600
Q Results directory T1.600.2004-1 I = Change
Spin systems 151 spins loaded and selected # Spin editor

Spectra list

4 Add == Delete
, , Spectrum D string Delay times Replicate IDs
neyc2 0010834 neyczb
neyc2b 0010834 neyc2
A neyel0 0.05417
neycls 00975 neyclsb
X neyc18b 0.0975 neycls
neycas 024918
neyc90 048753 neycooh
neycs0b 048753 neycso
neyc182 0985894 neycle2b
neyc182b 0985894 neycls2
neyc272 1473424
Grid search increments 21
D Gt i il 0o Thisis the number of increments per dimension of

the grid search performed prior to numerical

optimis ation,

() 2001-2012 the relax development team

proUET

Current data pipe origin - r1 (Tue Sep 4 15:47:36 2012)

5.4.6 Relax-fit GUI mode — optimisation and error analysis

Back in the main R; analysis tab, the grid search increments and number of Monte Carlo
simulations can be changed. The default values of 21 grid search increments and 500 MC

5.4. THE RELAXATION CURVE-FITTING AUTO-ANALYSIS IN THE GUI 67

simulations are optimal — lower values are not recommended. To perform the optimisation
and error analysis, click on the “Execute relax” button. The relax controller will open to
show you the progress of the optimisation and simulations:

Fle View Userfunctions (a-m) User functions (n-z) Tools Help

78l =

R1 600
I
| Setup
| I The relax controller
il The dat
TS NMR fre
Q Results
Spin sy: g
Spec
Current GUI analysis R1600
Current data pipe origin - r1 (Tue Sep 4 15:47:36 2012)
E
z z PEE Monte Carlo simulations:

- ERRR
ez

N6Ye2 Execution progress;

neyel
neyel Function calls: 214 -
noye1 Gradient callsi 0
Hessian calls: 0
neyed arning Sinplex has not moved
neyes
neyes
noye1 relaxs monte_carlo. setup(nusber=500)
Yl relaws monte_carlo.create_data(nethod='back_cale')
neyez
relax> monte_carlo. initial_values()
relax> nininise(nin_slgor="sinplex’, line_search=None, hessian_nod=None, hessian_typesNone, func_tol=le-25,
Grid set
Monte ¢ Over-fit spin deselection
Similation 1
Simulation 2 L3
Similation 3
Similation 4
Similation 5
Similation &
Similation 7 -
I >

() 2001-2012 the relax development team Current data pipe: origin - r1 (Tue Sep 4 15:47:36 2012)

Once finished, the “Results viewer” window will also appear:

Results

wer
Data pipe selection origin - rl (Tue Sep 4 15:47:36 2012) v
File type File path

Text T1.600.2004-11-02/d lysis/r1.600.0ut

Grace datarel T1.600.2004-11-02/d I I

Grace T1.600.2004-11-02/d

Grace T1.600.2004-11-02/d 1.600.agr

Grace T1.600.2004-1.

600

gin -1 (Tue Sep 4 15:47:36 2012)

L3 open
neye10 RO RREE AR AR
neyclsh
neycas relax> value.write(paran="rx', file='r1.600.out’, dir='/data/relaxation /g TL.600. 2004-11-02/data-analysis %
neyeso Opening the file */data/relaxation/Mg. TL.600.2004-11-02/data-analysis/r1.600.out" for writing
neycgob relax> results.write(file='results’, dir='/data/relaxation/Mg.T1.600.2004-11-02/data-analysis', compress_tyf,
neycla2 Opening the file '/data/relaxation/Mg.TL 600.2004-11-02/data-analysis/results.bz2' for writing
neycle2b
neyca72 relax> grace.write(x_data_type="spin’, y_data_type='chi2', spin id=None, plot_data='value’, file='chi2.agr,
Opening the file '/data/relaxation/Mg. TL 600.2004-11-02/data-analysis/grace/chi2.agr’ for writing
relax> grace.write(x_data_type="spin’, y_data_type='i0', spin_id=None, plot_data='value', file='i0.agr', dis
Opening the file */data/rel axation/Mg. TL.600.2004-11-02/dsta-analysis/grace/i0.agr" for writing
Grid search increments 21

Monte Carlo simulation number: 500

relax> grace.write(x_data_type='spin’,

Opening the file '/data/relaxation/tg

relax> grace.write(x_data_type='relax
Opening the file '/data/relaxation/g

relax> grace.write(x_data_type='relax

relax> state.save(state='r1.600.save’,

Opening the file '/data/relaxation/tg

Opening the file '/data/relaxation/Mg.

y_data_type='rx', spin_id=None, plot_data='value', file='rl.600.agr',
T1.600.2004-11-02/data-analysis/grace/r1.600.agr" for writing

times', y_data_type='intensities', spin_id=None, plot_data='value', fi
T1.600.2004-11-02/data-analysis/grace/intensities.agr’ for writing

tines', y_data_type='intensities', spin_id=None, plot_data='value', fi
1,600, 2004-11-02/data-analysis/grace/intensities_norn.agr' for writir

dir='/data/relaxation/Mg. T1.600. 2004-11-02/ data-analysis', compress_t
T1.600.2004-11-02/data-analysis/r1.600.save.bz2' for writing

T —— >

BB e relax

() 2001-2012 the relax development team origin - r1 (Tue Sep 4 15:47:36 2012)

Current data pipe

This window can be used to open the text files in the default text editor for your operating
system or the 2D Grace plots in xmgrace if available on your system.

68 CHAPTER 5. RELAXATION CURVE-FITTING

i Grace: intensities. agr (modified)

File Edit Data Plot View Window Help

GO: ¥, ¥ = [0.063657, 331774]

Draw

EI il 7e+05 T

AutaT 6e+05 —

Se+05 -

4e+05 —

3e+05 —

2e405

Average peak intensities

le+05 -

0 0.05 0.15 0.2

0.1
Relaxation time period (s)

Iocalhost localdomain, @0, /g T2 B00.2004-11-05/data-analysisfgracesintensities agr

Figure 5.1: Screenshot of the 2D peak intensity plots for the exponential relaxation curves
in Xmgrace.

5.5 Final checks of the curve-fitting

To be sure that the data has been properly collected and that no instrumentation
or pulse sequence timing errors have occurred, it is essential to carefully check the
intensities.agr and intensities norm.agr 2D Grace files. These are plots of the
decay curves for each spin system analysed, and any non-exponential behaviour should be
clearly visible (see Figure 5.1). If Xmgrace or a compatible program is not available for
your operating system, the Grace files contain text representations of the curves at the end
which can opened, edited and visualised in any another 2D graphing software package.

Note that errors resulting in systematic bias in the data — for example if temperature con-
trol (single-scan interleaving or temperature compensation blocks) or per-experiment /per-
spectrometer temperature calibration on MeOH or ethylene glycol have not been performed
— will not be detected by looking at the decay curves. See section 5.2.1 or the relax data.
temp_calibration user function documentation on page 450 and the relax data.temp_
control user function documentation on page 451 for more details.

Chapter 6

Calculating the NOE

6.1 Introduction to the steady-state NOE

The calculation of NOE values is a straight forward and quick procedure which involves
two components — the calculation of the value itself and the calculation of the errors. To
understand the steps involved the execution of a sample NOE calculation script will be
followed in detail. Then the same operations will be presented for the perspective of the
graphical user interface.

6.2 From spectra to peak intensities for the NOE

For a set of recommendations for how to obtain the best quality relaxation rates, please
see section 5.2 on page 49. In summary the following are important — temperature control
(though the standard steady-state NOE single FID interleaved pulse sequences are fine),
per-experiment temperature calibration, spectral processing with massive zero-filling and
no baseplane rolling, and using an averaged peak list for determining the peak heights.

69

70 CHAPTER 6. CALCULATING THE NOE

6.3 Calculation of the NOE in the prompt/script UI mode

6.3.1 NOE script mode — the sample script

This sample script can be found in the sample_scripts directory and will be used as the
template for the next sections describing how to use relax.

Script for calculating NOEs.

Create the data pipe.
pipe.create('NOE', 'noe')

Load the sequence from a PDB file.
structure.read_pdb ('Ap4Aase_new_3.pdb')
structure.load_spins (spin_id='@N")
structure.load_spins (spin_id='G@NE1')

Load the reference spectrum and saturated spectrum peak intensities.
spectrum.read_intensities(file='ref.list‘, spectrum_id=‘ref_ave‘)
spectrum.read_intensities(file='sat.list‘, spectrum_id=‘sat_ave‘)

Set the spectrum types.
noe.spectrum_type('ref', 'ref_ave')
noe.spectrum_type('sat', 'sat_ave')

Set the errors.
spectrum.baseplane_rmsd (error=3600, spectrum_id='ref_ave')
spectrum.baseplane_rmsd(error=3000, spectrum_id='sat_ave')

Individual residue errors.
spectrum.baseplane_rmsd (error=122000, spectrum_type='ref', res_num=114)
spectrum.baseplane_rmsd (error=8500, spectrum_type='sat', res_num=114)

Peak intensity error analysis.
spectrum.error_analysis ()

Deselect unresolved spins.
deselect.read(file='unresolved', res_num_col=1, spin_name_col=2)

Calculate the NOEs.
calc()

Save the NOEs.
value.write(param='noe', file='noe.out', force=True)

Create Grace files.
grace.write(y_data_type='peak_intensity', file='intensities.agr', force=True)
grace.write(y_data_type='noe', file='noe.agr', force=True)

View the Grace files.
grace.view(file='intensities.agr')
grace.view(file='noe.agr')

Write the results.
results.write(file='results', dir=None, force=True)

Save the program state.
state.save('save', force=True)

6.3. CALCULATION OF THE NOE IN THE PROMPT/SCRIPT UI MODE 71

6.3.2 NOE script mode — initialisation of the data pipe

The start of this sample script is very similar to that of the relaxation curve-fitting calcu-
lation on page 55. The command

Create the data pipe.
pipe.create('NOE', 'noe')

initialises the data pipe labelled “NOE”. The data pipe type is set to the NOE calculation
by the argument “noe”.

6.3.3 NOE script mode — setting up the spin systems

The backbone amide nitrogen sequence is extracted from a PDB file using the same com-
mands as the relaxation curve-fitting script (Chapter 5. The command

Load the sequence from a PDB file.
structure.read_pdb ('Ap4Aase_new_3.pdb')

will load the PDB file Ap4Aase new_3.pdb into relax. Then the following commands will
generate both the backbone amide and tryptophan indole N spins

structure.load_spins (spin_id='@N")
structure.load_spins (spin_id='@NE1')

6.3.4 NOE script mode — loading the data

The commands

Load the reference spectrum and saturated spectrum peak intensities.
spectrum.read_intensities(fi1e='ref.list‘, spectrum_id=‘ref_ave‘)
spectrum.read_intensities (file='sat.list', spectrum_id='sat_ave')

will load the peak heights of the reference and saturated NOE experiments (although the
volume could be used instead). relax will automatically determine the format of the peak
list. Currently only Sparky, XEasy, NMRView and a generic columnar formatted text file
are supported.

In this example, relax will determine from the file contents that these are Sparky peak
lists (saved after typing “It”). The first column of the file should be the Sparky assignment
string and it is assumed that the 4"" column contains either the peak height or peak volume
(though this can be in any column — the int_col argument is used to specify where the
data is). Without specifying the int method argument, peak heights will be assumed. See
page 485 for a description of all the spectrum.read_intensities user function arguments.
In this example, the peak list looks like:

Assignment wil w2 Data Height
LEU3N-HN 122.454 8.397 129722
GLY4N-HN 111.999 8.719 422375

SERS5N-HN 115.085 8.176 384180

72 CHAPTER 6. CALCULATING THE NOE

MET6N-HN 120.934 8.812 272100
ASP7N-HN 122.394 8.750 174970
SER8N-HN 113.916 7.836 218762
GLU11N-HN 122.194 8.604 30412
GLY12N-HN 110.525 9.028 90144

For subsequent usage of the data in relax, assuming a 3D structure exists, it is currently
advisable to use the same residue and atom numbering as found in the PDB file.

If you have any other format you would like read by relax please send an email to the relax
development mailing list detailing the software used, the format of the file (specifically
where the residue number and peak intensity are located), and possibly attaching an
example of the file itself.

6.3.5 NOE script mode — setting the errors

In this example the errors where measured from the base plain noise. The Sparky RMSD
function was used to estimate the maximal noise levels across the spectrum in regions
containing no peaks. For the reference spectrum the RMSD was approximately 3600
whereas in the saturated spectrum the RMSD was 3000. These errors are set by the
commands

Set the errors.

spectrum.baseplane_rmsd (error=3600, spectrum_id='ref_ave')
spectrum.baseplane_rmsd(error=3000, spectrum_id='sat_ave')

For the residue G114, the noise levels are significantly increased compared to the rest of
the protein as the peak is located close to the water signal. The higher errors for this
residue are specified by the commands

Individual residue errors.

spectrum.baseplane_rmsd (error=122000, spectrum_type='ref', res_num=114)
spectrum.baseplane_rmsd (error=8500, spectrum_type='sat', res_num=114)

There are many other ways of setting the errors, for example via spectrum duplication,
triplication, etc. See the documentation for the spectrum.error_analysis user function
on page 482 for all possible options. This user function needs to be executed at this stage
to correctly set up the errors for all spin systems:

Peak intensity error analysis.
spectrum.error_analysis ()

6.3.6 NOE script mode — unresolved spins

As the peaks of certain spins overlap to such an extent that the heights or volumes cannot
be resolved, a simple text file was created called “unresolved” in which each line consists
of the residue number followed by the atom name. By using the command

Deselect unresolved spins.
deselect.read (name, file='unresolved', res_num_col=1, spin_name_col=2)

all spins in the file “unresolved” are excluded from the analysis.

6.3. CALCULATION OF THE NOE IN THE PROMPT/SCRIPT UI MODE 73

6.3.7 NOE script mode — the NOE calculation

At this point the NOE can be calculated. The user function

Calculate the NOEs.
calc()

will calculate both the NOE and the errors. The NOE value will be calculated using the

formula

Isa
NOE = =% (6.1)

]}ef

where I, is the intensity of the peak in the saturated spectrum and I,.; is that of the
reference spectrum. The error is calculated by

(Usat : Iref)2 + (Uref : Isat)2
]}ef

ONOE = , (6.2)

where 04, and o,y are the peak intensity errors in the saturated and reference spectra
respectively. To create a file of the NOEs the command

Save the NOEs.
value.write (param='noe', file='noe.out', force=True)

will create a file called noe.out with the NOE values and errors. The force flag will cause
any file with the same name to be overwritten. An example of the format of noe.out is

mol_name res_num res_name spin_num spin_name value error
Ap4Aase_new_3_moll 1 GLY 1 N None None
Ap4Aase_new_3_moll 2 PRO 11 N None None
Ap4Aase_new_3_moll 3 LEU 28 N None None
Ap4Aase_new_3_moll 4 GLY 51 N -0.038921946984531344 0.019031770246176943
Ap4Aase_new_3_moll 5 SER 59 N -0.312404225679127 0.018596937298386886
Ap4Aase_new_3_moll 6 MET 71 N -0.42850831873249773 0.02525856323041225
Ap4Aase_new_3_moll 7 ASP 91 N -0.5305492810313481 0.027990623144176396
Ap4Aase_new_3_moll 8 SER 104 N -0.5652842977581912 0.021706121467731133
Ap4Aase_new_3_moll 9 PRO 116 N None None
Ap4Aase_new_3_moll 10 PRO 133 N None None
Ap4Aase_new_3_moll 11 GLU 150 N None None
Ap4Aase_new_3_moll 12 GLY 167 N -0.7036626368123614 0.04681370194503697
Ap4Aase_new_3_moll 13 TYR 175 N -0.747464566367261 0.03594640051809186
Ap4Aase_new_3_moll 14 ARG 200 N -0.7524129557634996 0.04957018638401278

6.3.8 NOE script mode — viewing the results

Any two dimensional data set can be plotted in relax in conjunction with the program
Grace. The program is also known as Xmgrace and was previously known as ACE/gr or
Xmgr. The highly flexible relax user function grace.write is capable of producing 2D
plots of any x-y data sets. The two commands

Create Grace files.

grace.write(y_data_type='peak_intensity', file='intensities.agr', force=True)
grace.write(y_data_type='noe', file='noe.agr', force=True)

http://plasma-gate.weizmann.ac.il/Grace/

74 CHAPTER 6. CALCULATING THE NOE

—

1A &
| i, e ¥ L aia |
%ﬁ %} a mﬁ% i {ﬁﬁﬁ% i 4

: ot

A8

Q |]

Z [
04l ¢ $.
|3 e N spins. < |

= NEI spins.

0.2 a
0 IETENRARA I RRRRI RN A RAR RN ARRRTR N NARRTRRNRARA R NARRTR] NRURRRRRN) ARRRTRRNRARRYNNARRA RN NURRRRA NANRRRTRNARARRYRRNRARRRRNARRA NN RARTRTA NARRRRTARARARTRRNARRRRRRURE]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Residue number

Figure 6.1: A Grace plot of the NOE value and error against the residue number. This
is an example of the output of the user function grace.write.

will create one plot of the peak intensity of the reference and saturated spectra as different
graph sets in the same plot as well as one plot for the NOE and its error. The x-axis in
all three defaults to the residue number. Returning to the sample script three Grace data
files are created intensities.agr and noe.agr and placed in the default directory ./
grace. These can be visualised by opening the file within Grace. However relax will do
that for you with the commands

View the Grace files.

grace.view(file='intensities.agr')
grace.view(file='noe.agr')

An example of the output after modifying the axes is shown in figure 6.1.

6.4. THE NOE AUTO-ANALYSIS IN THE GUI 75

6.4 The NOE auto-analysis in the GUI

The relax graphical user interface provides access to an automated steady-state NOE
analysis. This auto-analysis operates in the same way as the sample script described
earlier in this chapter. In this example, relax will be launched with:

$ relax --log log --gui
The --log command line argument will cause all of relax’s text printouts to be placed

into the log file which can serve as a record for later reference (the --tee command line
argument could be used as well).

6.4.1 NOE GUI mode — initialisation of the data pipe

First launch the analysis selection wizard (see Figure 1.4 on page 12). Select the NOE
analysis and, if you plan on running steady-state NOE analyses from multiple fields in one
relax instance, change the name of the analysis:

e d'Auverg 008b col
g the gold standard Monte Calro simulations.
nalysi

The name of the new analysis: NOE 500

The second part of the wizard need not be modified, just click on “Start” to begin. This
will create a dedicated data pipe for the analysis. A data pipe bundle will also be created,
but for the steady-state NOE will only contain a single data throughout the analysis.

76 CHAPTER 6. CALCULATING THE NOE

Analysis selection wizard

Data pipe set up

Select the name of the data pipe used at the start of the analysis and the name of the data
pipe bundle to be associated with this analysis. Al data in relax is kept within a special
structure known as the relax data store. This store is composed of multiple data pipes.
each being associated with a specific analysis type. Data pipe bundles are simple groupings
of the pipes within the data store and each analysis tab is coupled to a specific bundle.

simple analyses such as the steady-state NOE and the R1 and R2 curve-fitting will be
located within 2 single data pipe. More complex analyses such as the automated
model-free analysis vill be spread across multiple data pipes, internally created by forking
the original data pipe which holds the input data. all grouped together within a single bundle.

The initialisation of a new analysis will call the pipe.create user function with the pipe name
and pipe bundle as given below,

The starting data pipe for the analysis origin - noe (Fri Aug 31 14:57:40 2012)

The data pipe bundle: noe (Fri Aug 31 14:57:40 2012)

[o Back H VS:;n] [OCEVV:E\I

| Accept the operation

6.4.2 NOE GUI mode — general setup

You should then see the blank analysis tab:

relax 2.1.0 -3 X

File View Userfunctions (a-m) User functions (n-z) Tools Help

999 BEHMA 7 & .l=1ia

NOE 500
Setup for steady-state NOE analysis
The data pipe bundle: noe (Fri Aug 31 2153118 2012)
Onn MR frequency label [MHz]
Results directory Noe 5002004 " I | £ change |
y Spin systems 0 spins loaded and selected | # spin editor|
\

Spectra list

A

Spectrum ID string

BB, e relax

[current data pipe: [origin - noe (Fri Aug 31 21:53:18 2012)

[(€) 2001-2012 the relax development team

The first thing to do now is to set the NMR frequency label. This is only used for the name

of the NOE output file. For example if you set the label to “500”, the file noe.500.out
will be created at the end of the analysis.

You can also choose to change the “Results directory” where all of the automatically created
results files will be placed. These two steps are unique to the GUI mode.

6.4. THE NOE AUTO-ANALYSIS IN THE GUI 7

6.4.3 NOE GUI mode — setting up the spin systems

Just as in the prompt and scripting UI modes, the molecule, residue and spin data struc-
tures need to be set up prior to the loading of any spin specific data. The “Spin systems”
GUI element is used for this purpose. Before any spin systems have been set up, this
should say something like “0 spins loaded and selected”. To fix this, click on the “Spin editor”
button and you should then see the spin viewer window. The next steps are fully described
in section 4.5.2 on page 40 for PDB files or section 4.5.3 on page 43 for a sequence file.
The spin viewer window can now be closed.

6.4.4 NOE GUI mode — unresolved spins

Using the unresolved spins file as described in the prompt/script UI sections, the same
spins can be deselected at this point. See Section 4.5.5 on page 44 for the details of how
to deselect the spins in the GUI.

6.4.5 NOE GUI mode — loading the data

The next step is to load the saturated and reference NOE peak lists. From the main NOE
auto-analysis tab, click on the “Add” button in the “Spectra list” GUI element. This will
launch the NOE peak intensity loading wizard. From the first wizard page, select the peak
list file containing the reference intensities (from the averaged shift list):

-

Fle View Userfunctions (a-m) User functions (n-z) Tools Help

°Q LHMA 7 & ul=1ia

NOE 500

]! '\.gN—H

Set up the NOE peak intensities

Peak intensity reading.

" The spectrum.read_intensities user function

] B Change
y Read peak intensities from a file. & spin editol]
\ e
Description
/ “ The peak intensity can either be from peak heights or peak volumes
) The file name: 19 Noe.500.2004-10-04/data-analysis/ref_ave.list |3 | A
X
5‘ The spectrum ID string Select the file.
. ~{ LT The heteronucleus name: N
Y ‘ The proton name; HN
&Y <3
) The peak integration method: height -
The intensity column: =)
The spin D string
The Bruker ncproc parameter.
Free format file settings
i B el [=]
: ®
2
3
4
5
Column separator. white space -
& Apply W skip P Next @ cancel
B, oo

() 2001-2012 the relax development team Current data pipe: origin - noe (Fri Aug 31 14:57:40 2012)

Then set the obligatory spectrum ID string to a unique value (in this case “ref”). The
spectral dimension may need to be changed so that the peak intensities are associated
with the correct atom of the pair. In case you have forgotten the spin names or the format
of the peak list next to the file name selection button is a preview button which can be
used to open the peak list in the default text editor. Set the other fields as needed. Click
on “Next” Note that a RelaxWarning will be thrown for all peak list entries which do

78 CHAPTER 6. CALCULATING THE NOE

not match a spin system within the relax data store. This will cause the relax controller
window to appear:

-
Fle View User functions (a-m} User functions (n-z) Tools Help
9°Q BHM 7 Ful=1a

NOE 500

The relax controller

! 7 # Spin editor

Current GUI analysis: NOE 500

Current data pipe: origin - noe (Fri Aug 31 21:53:18 2012)

Execution progress:

0«

v
ing the data ['ASNS12ND2-HD22', '113.256", '

3 @ cancel

BB ccite relax

() 2001-2012 the relax development team Current data pipe origin - noe (Fri Aug 31 21:53:18 2012)

Carefully check these warnings to be sure that the data is correctly loaded and, if every-
thing is fine, the relax controller window can be closed. If the dimension has been wrongly
specified or some other setting is incorrect a RelaxError might appear saying that no data
was loaded — you will then need to fix the settings and click on “Apply” again. The error
type page should now appear.

-

File View Userfunctions (a-m) User functions (n-z) Tools Help

9°Q BHM 7 Ful=1a

NOE 500
Set up the NOE peak intensities - X

Specify the type of error to be used

Please specify from where the peak intensity errors will be obtained. The is required for the execution of the
spectrum.error_analysis user function which will be postponed until after clicking on the 'Execute relax' button at the 5 Change
end of the automatic analysis page. To understand how the errors will be propagated and analysed, the main parts $. spin editor
of the spectrum error_analysis user function description are given below.

Description

This user function must only be called after all peak intensities have been loaded and all other necessary spectral
information set. This includes the baseplane RMSD and the number of points used in volume integration, both of
which are only used if spectra have not been replicated

Six different types of error analysis are supported depending on whether peak heights or volumes are supplied,
whether noise is determined from replicated spectra or the RMSD of the baseplane noise, and whether al spectra
or only a subset have been duplicated. These are:

Int type Noise source Error scope

Heights RMSD baseplane one signa per peak per spectrun

Heights Partial duplicate + variance averaging One signa for all peaks, all spectra

Heights ALl replicated + variance averaging na per replicated spectra set
Volumes RMSD baseplane per peak per spectrun

Volumes Partial dupli: ng for all peaks, all spectra
Volumes ALl replicated + var: per replicated spectra set

 Baseplane RMSD.

Replicated spectra.

4 Back P Next @ cancel

Move to the next page

BB ccite relax

() 2001-2012 the relax development team Current data pipe origin - noe (Fri Aug 31 21:53:18 2012)

Please read the description in this window very carefully to know what to do next. In this
example, we will choose “Baseplane RMSD”. For this specific example, Sparky’s “Extensions—
Spectrum—Spectrum baseplane RMSD” option in the “F1” selection mode was used to measure
empty regions of the spectrum (mainly in the random coil region) to determine an average

6.4. THE NOE AUTO-ANALYSIS IN THE GUI

RMSD of approximately 3600. Set the value and click on “Apply”.

Fle View Userfunctions (a-m) User functions (n-z) Tools Help

°Q LHM 7 & ul=1a

NOE 500

Set up the NOE peak intensities

Baseplane RMSD setting.

The spectrum.baseplane rmsd user function
i £ Change

Set the baseplane RMSD of a given spin in a spectrum for error analysis. # spin editor

Description

The spectrum ID identifies the spectrum associated with the error and must correspond to a previously loaded set
of intensities. If the spin ID is unset, then the error value for all spins wil be set to the supplied value:

The error. [3s00.9

The spectrum ID string ref -

The spin ID string

o Back « Apply W skip B rext @ cancel
Apply the operation

BB e relax

() 2001-2012 the relax development team Current data pipe: origin - noe (Fri Aug 31 21:53:18 2012)

79

As glycine 114 is located close to the noise signal, its error was much higher at 122000.
Individual spin errors can be set via the spin ID string (see section 4.2.2 on page 36 for

information about spin IDs):

-
Fle View User functions (a-m) User functions (n-2) Tools Help
°°Q WHHM 7 & ul=ia

NOE 500

Set up the NOE peak intensities

Baseplane RMSD setting.

The spectrum.baseplane rmsd user function
i £ Change

Set the baseplane RMSD of a given spin in a spectrum for error analysis. # spin editor

Description

The spectrum ID identifies the spectrum associated with the error and must correspond to a previously loaded set
of intensities. If the spin ID is unset, then the error value for all spins wil be set to the supplied value:

The error: 122000
The spectrum ID string ref -
The spin D string 114

4 Back & Apply W skip P Next @ cancel

Move to the next page

B e relax

() 2001-2012 the relax development team Current data pipe: origin - noe (Fri Aug 31 21:53:18 2012)

Finally select which type of spectrum this is and click on “Finish”:

80 CHAPTER 6. CALCULATING THE NOE

Fle View User functions (a-m} User functions (n-z) Tools Help
9°Q BHK 7 Ful=1a
NOE 500

Set up the NOE peak intensities - X

S% Steady-state NOE spectrum type.
&
Y
% Onn I
%’L\ON—H The noe.spectrum_type user function —
ﬁ \

Set the steady-state NOE spectrum type for pre-loaded peak intensities. & spin editor

The spectrum type can be one of the following:
- The steady-state NOE reference spectrum

- The steady-state NOE spectrum with proton saturation tumed on

Peak intensities should be loaded before this user function via the spectrum read_intensities user function. The
intensity values will then be associated with a spectrum ID string which can be used here

The spectrum type: -

Saturated spectrum

The spectrum ID string ref

4

o Back « Apply « Finish @ cancel

BB e el

() 2001-2012 the relax development team Current data pipe origin - noe (Fri Aug 31 21:53:18 2012)

The entire procedure should be repeated for the saturated spectrum (or you may have
worked out that both can be loaded simultaneously by using the “Apply” button more
often). For this example, the spectrum ID was set to “sat” and the baseplane RMSD to
3000 for all spins (except for G114 which had an error of 8500).

The NOE analysis tab should now look like:

relax 2.1.0 -3 X

Fle View User functions (a-m} User functions (n-z) Tools Help

9°Q BHK 7 Ful=1a
NOE 500

Setup for steady-state NOE analysis
©
~ The data pipe bundle: noe (Fri Aug 31 21:53:18 2012)
» Onn NMR frequency label [MHz] s00
Results directory Jdatajrelaxation/Mg Noe.500.2004- 10-04/data-analysis & change
W Spin systems 172 spins loaded and selected # Spin editor
\

Spectra list

o Add == Delete

Spectrum ID string NOE spectrum type

ref

Reference
sat Saturated
BB e o
S
(C) 2001-2012 the relax development team Current data pipe: origin - noe (Fri Aug 31 21:53:18 2012)

6.4.6 NOE GUI mode — the NOE calculation

Now that everything is set up, simply click on “Execute relax” in the NOE analysis tab.
The relax controller window will appear displaying many messages. These should all be

6.4. THE NOE AUTO-ANALYSIS IN THE GUI

checked very carefully to make sure that everything has executed as you expected.

“Results viewer” window will also appear:

-

-5 X
Data pipe selection | origin - noe (Fri Aug 31 2153118 2012)

4

File type File path
Text
Grace

N a- d

500.0ut
N a- d:

£ Change

Spin editor

1g. Noe 500, 2004 -10-04/d
500.0ut* for writing

B e relax
S

() 2001-2012 the relax development team Current data pipe: origin - noe (Fri Aug 31 21:53:18 2012)

81

The

The results viewer window can be used to launch a text editor to see the NOE values and

error or Grace to visualise the results (see Figure 6.1 on page 74).

As a last step, the relax state can be saved (via the “File” menu) and relax closed. Take
one last look at the noe.out log file to be certain that there are no strange warnings or

errors.

82

CHAPTER 6. CALCULATING THE NOE

Chapter 7

Model-free analysis

7.1 Model-free theory

7.1.1 The chi-squared function — x?(6)

The chi-squared equation is itself dependent on the relaxation equations through the back-
calculated relaxation data R(#). Letting the relaxation values of the set R(6) be the
R1(0), Ra2(6), and NOE(#) an additional layer of abstraction can be used to simplify the
calculation of the gradients and Hessians. This involves decomposing the NOE equation
into the cross relaxation rate constant oyop(6) and the auto relaxation rate Ri(#). Taking
equation (7.5) below the transformed relaxation equations are

R1(0) = R1(0), la
Ra(0) = R5(0), 7.1b)
NOE(f) = 1 + % ”&?‘Ex). (7.1c)

whereas the relaxation equations are the Ry(0), R2(0), onor(f).

83

84 CHAPTER 7. MODEL-FREE ANALYSIS

7.1.2 The relaxation equations — R}(6)

The relaxation values of the set R’(f) include the spin-lattice, spin-spin, and cross-
relaxation rates at all field strengths. These rates are respectively (Abragam, 1961)

R1(0) = d(J(wn — wx) +3J(wx) + 6w +wx)) +elwx), (7.2)
Ro(6) = § (47(0) + J(wm —wx) + 8] (wx) + 6] (wn)

+6J@4p+wxg-+§(4uoy+&uwxg-+Rm, (7.2b)

oon(0) = d(67(wrn +wx) = J(wn — wx)), (7.2¢)

where J(w) is the power spectral density function and R, is the relaxation due to chemical
exchange. The dipolar and CSA constants are defined in SI units as

1/ po\? ('YH'YXh)2
=3 (%) Ty (73)
_ (wpAo)?
c= ST — (7.4)

where g is the permeability of free space, 75 and vy are the gyromagnetic ratios of the
H and X spins respectively, & is Plank’s constant divided by 27, r is the bond length, and
Ao is the chemical shift anisotropy measured in ppm. The cross-relaxation rate oyog is
related to the steady state NOE by the equation

Tu UNOE(H)
Vx R1(9) '

NOE(®f) = 1 + (7.5)

7.1.3 The spectral density functions — J(w)

The relaxation equations are themselves dependent on the calculation of the spectral
density values J(w). Within model-free analysis these are modelled by the original model-
free formula (Lipari and Szabo, 1982a,b)

2 (& (1- 82)(r. + 7)m.
J(w) = g Z:Z_:k Ci T (1 + (UJTz‘)2 + (Te T Ti)2 T (WTeTZ')2>’ (76)

where S? is the square of the Lipari and Szabo generalised order parameter and 7. is
the effective correlation time. The order parameter reflects the amplitude of the motion
and the correlation time in an indication of the time scale of that motion. The theory
was extended by Clore et al. (1990) by the modelling of two independent internal motions
using the equation

k 2
2 2 1—=8%) (7 +m)7
RS SN e R
5i:_k 1+ (wry) (7 +73)? + (wTT3)

7.1. MODEL-FREE THEORY 85

where SJ% and 7y are the amplitude and timescale of the faster of the two motions whereas
S2? and 7, are those of the slower motion. SJ% and S2 are related by the formula S? = S]% .52,

If these forms of the model-free spectral density functions are unfamiliar, that is because
these are the numerically stabilised forms presented in d’Auvergne and Gooley (2008b).
The original model-free spectral density functions presented in Lipari and Szabo (1982a)
and Clore et al. (1990) are not the most numerically stable form of these equations. An im-
portant problem encountered in optimisation is round-off error in which machine precision
influences the result of mathematical operations. The double reciprocal 771 = 7,1 + 71
used in the equations are operations which are particularly susceptible to round-off error,
especially when 7. < 7,,,. By incorporating these reciprocals into the model-free spectral
density functions and then simplifying the equations this source of round-off error can be
eliminated, giving relax an edge over other model-free optimisation software.

7.1.4 Brownian rotational diffusion

In equations (7.6) and (7.7) the generic Brownian diffusion NMR correlation function
presented in d’Auvergne (2006) has been used. This function is

k
1
C(r) = H Z ci-e /T (7.8)
i——k

where the summation index ¢ ranges over the number of exponential terms within the
correlation function. This equation is generic in that it can describe the diffusion of an
ellipsoid, a spheroid, or a sphere.

Diffusion as an ellipsoid

For the ellipsoid defined by the parameter set {D;s0, D4, Dy, o, B, v} the variable k
is equal to two and therefore the index i € {—2,—1,0,1,2}. The geometric parameters
{Diso, Da, D} are defined as

Qiso = %(Qx + Qy + ©2)7 (79&)
Do=9.— 3D, +D,), (7.9b)

Dy —9,
@7« = Ta, (79(3)

and are constrained by

0 < BDjs0 < 00, (7.10a)

Qiso
0<9, <7 < 350, (7.10b)

3+ 9,

The orientational parameters {a, [, v} are the Euler angles using the z-y-z rotation
notation.

86 CHAPTER 7. MODEL-FREE ANALYSIS

The five weights ¢; are defined as

c_o=1(d—e), (7.11a)
c_1 = 30262, (7.11b)
co = 36252, (7.11c)
22
= 35z5y, (7.11d)
where
d=3(8y+0,+05;)—1, (7.12)
1
e= % (1+3D,) (63 +20.67) + (1 —3D,) (6, +26362) — 2 (67 +2026,) |, (7.13)
and where
R=+1+3D2 (7.14)
The five correlation times 7; are
1/’7'_2 = 6@2'30 - ZQQ%, (7.15&)
1/721 = 60450 — Do(1 4 39,), (7.15b)
1/70 = 60450 — Du(1 — 39,), (7.15¢)
/1 = 6950 + 29, (7.15d)
1/7’2 = 69,50 + 2D NR. (7.156)

Diffusion as a spheroid

The variable k is equal to one in the case of the spheroid defined by the parameter set
{Disor Da, 0, ¢}, hence i € {—1,0,1}. The geometric parameters {D;s,, D,} are defined
as

Diso = 3(D +29,), (7.16a)

and are constrained by
0 < Djgo < 00, (7.17a)
—3D50 < Dy < 3Ds0 (7.17b)

The orientational parameters {6, ¢} are the spherical angles defining the orientation of
the major axis of the diffusion frame within the lab frame.

The three weights ¢; are

1(362 — 1)%, (7.18a)
302(1 — 62), (7.18b)
362 — 1) (7.18c¢)

O
|| ||

7.1. MODEL-FREE THEORY 87

The five correlation times 7; are

1/71 = 6050 — 2D, (7.19a)
1/70 = 6Diso — Da, (7.19b)
1/71 = 6Digo + 2Dg. (7.19¢)

Diffusion as a sphere

In the situation of a molecule diffusing as a sphere either described by the single parameter
Tm Or Djso, the variable k is equal to zero. Therefore i € {0}. The single weight c¢q is
equal to one and the single correlation time 7y is equivalent to the global tumbling time
Tm given by

/T = 6D;s0. (7.20)

This is diffusion equation presented in Bloembergen et al. (1948).

7.1.5 The model-free models

Extending the list of models given in Mandel et al. (1995); Fushman et al. (1997);
Orekhov et al. (1999a); Korzhnev et al. (2001); Zhuravleva et al. (2004), the models built

into relax include

m0 = {}, 7.21.0
ml = {S?}, 7.21.1
m2 = {S?, 1.}, 7.21.2
m3 = {S%, Re, }, 7.21.3

m4 = {S% 7., Rex},

mb = {52,5?,7'8},

m6 = {52,Tf,S]2c,T8},

m7 = {52,51%,7'3,]%%},
m8 = {52,Tf,S.?‘,TS,Rex},
m9 = {Rez }-

The parameter R, is scaled quadratically with field strength in these models as it is
assumed to be fast. In the set theory notation, the model-free model for the spin system
1 is represented by the symbol §;. Through the addition of the local 7, to each of these
models, only the component of Brownian rotational diffusion experienced by the spin

88 CHAPTER 7. MODEL-FREE ANALYSIS

system is probed. These models, represented in set notation by the symbol T;, are

tm0 = {7, },

tml = {7, S?},

tm2 = {7, S%, 7.},

tm3 = {7m, 5%, Rex },

tm4 = {7, 8% 7, Rex },

tmb = {Tm,S2,S]2c,T3},

tmb = {Tm,S2,’7'f,SJ2z,TS},
tm7 = {1, S%, SJ%,TS,R%},
tm8 = {7, S?, 77, S]%,TS, Rc.},
tm9 = {7, Rez }-

7.1.6 Model-free optimisation theory

The implementation of optimisation in relax is discussed in detail in Chapter 13. To
understand the concepts in this subsection, it is best to look at that chapter first.

The model-free space

In model-free analysis the target function f(#) is the chi-squared equation

n . _ R, 2
o) =y T OF, (7.23)
=1 ?

where ¢ is the summation index, R; is the experimental relaxation data which belongs to
the data set R and includes the Rj, Rg, and NOE values at all field strengths, R;(0) is the
back calculated relaxation data belonging to the set R(6), and o; is the experimental error.
For the optimisation of the model-free parameters while the diffusion tensor is held fixed,
the summation index ranges over the relaxation data of an individual spin. If the diffusion
parameters are optimised simultaneously with the model-free parameters the summation
index ranges over all relaxation data of all selected spins of the macromolecule.

Given the current parameter values the model-free function provided to the algorithm will
calculate the value of the model-free spectral density function J(w) at the five frequencies
which induce NMR relaxation by using Equations (7.6) and (7.7). The theoretical Ry, Ro,
and NOE values are then back-calculated using Equations (7.2a), (7.2b), (7.2¢), and (7.5).
Finally, the chi-squared value is calculated using Equation (7.23).

To produce the gradient and Hessian required for model-free optimisation a large chain of
first and second partial derivatives needs to be calculated. Firstly the partial derivatives
of the spectral density functions (7.6) and (7.7) are necessary. Then the partial derivatives
of the relaxation equations (7.2a) to (7.2¢) followed by the NOE equation (7.5) are needed.

7.1. MODEL-FREE THEORY 89

Finally the partial derivative of the chi-squared formula (7.23) is required. These first and
second partial derivatives, as well as those of the components of the Brownian diffusion
correlation function for non-isotropic tumbling, are presented as Chapter 14.

Grid search

Due to the complexity of the curvature of the model-free space, the grid point with the
lowest chi-squared value may in fact be on the opposite side of the space to the local min-
imum. Therefore the model-free space renders many optimisation algorithms ineffective
(d’Auvergne and Gooley, 2008b).

Parameter constraints

To understand this section, please see Section 13.5 on page 264. For model-free analysis,
linear constraints are the most useful type of constraint as the correlation time 7; can be
restricted to being less than 7, by using the inequality 7, — 77 > 0.

For the parameters specific to individual spins the linear constraints in the notation of
(13.18) are

1 0 0 0 0 0O 0O © 0
1 0 0 0 0 0O O © -1
01 0 0 0 00 0 O 0
0 -1 0 0 0 00 0 O -1
0O 0 1.0 0 00 0 O 5?2 0
00 =10 0 00 0 0 S7 ~1
1 1 0 0 0 00 0O © S? 0
1 0 1 0 0 00 0 © T 0
0O 0 01 0 00 0 O | = 0 (7.24)
0O 0 00 1 00 0 O Ts 0
0O 0 00 0 10 0 O R.. 0
0O 0 00 -110 0 0 r 0
0 0 00 0 01 0 O CSA 0
0O 0 0 0 0O 0O 1 © 0.9¢~10
0O 0 0 0 0 0O0 -1 0 2¢10
O 0 00 0 00 0 1 300e6
0O 0 0 0 0 00 0 -1 0

Through the isolation of each individual element, the constraints can be seen to be equiv-

90 CHAPTER 7. MODEL-FREE ANALYSIS

alent to

0<8%<1, (7.25a)
0<S7<1, (7.25b)
0<5%2<1, (7.25¢)

5% < 5%, (7.25d)

5% < 82, (7.25¢)

e 20, (7.25f)

T >0, (7.25g)

75 20, (7.25h)

76 20, (7.251)

TF < Ts, (7.25)

Rey >0, (7.25K)
0.9¢719 <r <2719, (7.251)
—300e % < CSAKO. (7.25m)

To prevent the computationally expensive optimisation of failed models in which the inter-
nal correlation times minimise to infinity (d’Auvergne and Gooley, 2006), the constraint
Tes Tfy Ts < 27, was implemented. When the global correlation time is fixed the constraints
in the matrix notation of (13.18) are

-1 0 0 Te —2Tm
0O =1 O -7 =21|-2mm]|- (7.26)
0 0 -1 Ts —27T,

However when the global correlation time 7, is one of the parameters being optimised the
constraints become

2 -1 0 0 " 0
2 0 -1 0 cl>|o]. (7.27)
2 0 0 -1 :f 0

0 < Ty < 200.0e77, (7.28a)
Dq 20, (7.28b)
0<9, <1, (7.28c)

1 0 0 0
-1 0 0 Tm —200.0e7?
0 1 0 D, | > 0 . (7.29)
0 0 1 D, 0
0 0 -1 -1

7.1. MODEL-FREE THEORY 91

The upper limit of 200 ns on 7,, prevents the parameter from heading towards infinity
when model failure occurs (see d’Auvergne and Gooley (2006)). This can significantly
decrease the computation time. To isolate the prolate spheroid the constraint

(1) - (Da) = (0), (7.30)

is used whereas to isolate the oblate spheroid the constraint used is

(=1) - (®a) > (0)- (7.31)

Dependent on the model optimised, the matrix A and vector b are constructed from
combinations of the above linear constraints.

Diagonal scaling

The concept of diagonal scaling is explained in Section 13.6 on page 266.

For the model-free analysis the scaling factor of one is used for the order parameter and
a scaling factor of le™'2 is used for the correlation times. The R, parameter is scaled
to be the chemical exchange rate of the first field strength. The scaling matrix for the
parameters {52, SJ%, S2, Te, Ty Tsy Rex, 7, CSA} of individual spins is

100 0 0 0 0 0 0
010 0 0 0 0 0 0
0 01 0 0 0 0 0 0
000 le'?2 0 0 0 0 0
0 00 0 le~12 0 0 0 0 (7.32)
0 00 0 0 le~12 0 0 0
000 O 0 0 (2mrwg)™? 0 0
0 0O 0 0 0 0 le719 0
000 O 0 0 0 0 le?
For the ellipsoidal diffusion parameters {7,,, D4, ®., , 3, 7} the scaling matrix is
le?2 0 0000
0 1" 0 0 00
0 0 1.0 00
0 0 01 00 (7.33)
0 0 00 10
0 0 00 01
For the spheroidal diffusion parameters {7,,,, Dq, 0, ¢} the scaling matrix is
le2 0 00
0 12" 0 0
0 0 1 0 (7.34)
0 0 01

92 CHAPTER 7. MODEL-FREE ANALYSIS

7.2 Optimisation of a single model-free model

7.2.1 Single model-free model script mode — the sample script

The sample script which demonstrates the optimisation of model-free model m4 which
consists of the parameters {S?, 7., Re,} is model free/single model.py. The text of the
script is:

Script for model-free analysis.

Create the data pipe.
name = 'm4'
pipe.create (name, 'mf')

Set up the 15N spins.

sequence.read(‘noe.EOO.out‘, res_num_col=1, res_name_col=2)
spin.name('N")

spin.element (element='N', spin_id='G@N')

spin.isotope('15N', spin_id='G@N"')

Load the relaxation data.

relax_data.read (ri_id='R1_600"', ri_type='R1', £frq=600.0*1e6, file='r1.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='R2_600"', ri_type='R2', £frq=600.0*1e6, file='r2.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600.0%*1e6, file='noe.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='R1_500"', ri_type='R1', £frq=500.0*1e6, file='r1.500.o0ut',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='R2_500"', ri_type='R2', £frq=500.0%*1e6, file='r2.500.o0ut',
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id='NOE_500', ri_type='NOE', frq=500.0%*1e6, file='noe.500.out',
res_num_col=1, data_col=3, error_col=4)

Initialise the diffusion tensor.
diffusion_tensor.init (10e-9, fixed=True)

Create all attached protons.
sequence.attach_protons ()

Define the magnetic dipole-dipole relaxation interaction.
interatom.define(spinid1='©N', spin_id2='G@H', direct_bond=True)
interatom.set_dist(spin_id1='©N', spin_id2='G@H', ave_dist=1.02 * 1e-10)
#interatom.unit_vectors ()

Define the CSA relaxation interaction.
value.set (-172 * 1le-6, 'csa')

Select the model-free model.
model_free.select_model (model=name)

Grid search.
grid_search(inc=11)

Minimise.
minimise('newton')

Monte Carlo simulations.
monte_carlo.setup (number=100)

7.3. OPTIMISATION OF ALL MODEL-FREE MODELS 93

monte_carlo.create_data()
monte_carlo.initial_values ()
minimise ('newton')
eliminate ()
monte_carlo.error_analysis ()

Finish.
results.write(file='results', force=True)
state.save('save', force=True)

7.2.2 Single model-free model script mode — explanation

The above script consists of three major sections:

Loading of data Firstly a data pipe called “m4” is created to hold all of the analysis data.
Then the °N spin system data consisting of molecule, residue, and spin information
is loaded into relax from the columns of the noe.500.out file, assuming that only
residue numbers and names are present and are in the first and second columns
respectively. The options of this sequence.read user function allow the molecule
name, residue number, residue name, spin number, or spin name columns to be
specified if desired. The N spin is then set up using the spin user functions. The
next part is to load all of the relaxation data, to set up the initial diffusion tensor,
create the 'H spins required for the magnetic dipole-dipole interaction, and to set up
the magnetic dipole-dipole and CSA relaxation mechanisms. Finally the model-free
model “m4” is chosen.

Optimisation The optimisation of model-free models requires an initial grid search
to find a position close to the minimum, followed by the high precision New-
ton optimisation together with the Method of Multipliers constraint algorithm
(d’Auvergne and Gooley, 2008b). Errors are propagated from the relaxation data
to the model-free parameters via Monte Carlo simulations which is a multi-step pro-
cess in relax (designed for flexibility and to teach how the simulations are constructed
and carried out).

Data output The last stage consists of writing out the XML formatted results file which
contains all of the data in the current data pipe, as well as the XML formatted save
file which contains not only the current data pipe data but all of the relax data store
data. Both files can be loaded back into relax later on.

7.3 Optimisation of all model-free models

7.3.1 All model-free models script mode — the sample script

The sample script which demonstrates the optimisation of all model-free models from m0
to m9 of individual spins is model free/mf multimodel.py. The important parts of the
script are:

94 CHAPTER 7. MODEL-FREE ANALYSIS

Set the data pipe names (also the names of preset model-free models).
pipes = ['m0', 'ml', 'm2', 'm3', 'm4', 'mb6', 'm6', 'm7', 'm8', 'm9']

Loop over the pipes.

for name in pipes:
Create the data pipe.
pipe.create (name, 'mf')

Set up the 15N spins.
sequence.read('noe.500.out', res_num_col=1)
spin.name ('N')

spin.element (element='N', spin_id='G@N')
spin.isotope('15N', spin_id='@N')

Load a PDB file.
structure.read_pdb ('example.pdb')

Load the relaxation data.

relax_data.read(ri_id='R1_600', ri_type='R1', £frq=600.0%*1e6, file='r1.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='R2_600", ri_type='R2', frq=600.0*1e6, file='r2.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='NOE_600", ri_type='NOE', frq=600.0*1e6, file='noe.600.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read(ri_id='R1_500', ri_type='R1', £frq=500.0%*1e6, file='r1.500.out"',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='R2_500", ri_type='R2', frq=500.0*1e6, file='r2.500.out',
res_num_col=1, data_col=3, error_col=4)

relax_data.read (ri_id='NOE_500", ri_type='NOE', frq=500.0*1e6, file='noe.500.out',
res_num_col=1, data_col=3, error_col=4)

Set up the diffusion tensor.
diffusion_tensor.init (1e-8, fixed=True)

Generate the 1H spins for the magnetic dipole-dipole relaxation interaction.
sequence.attach_protons ()

Define the magnetic dipole-dipole relaxation interaction.
interatom.define(spin_id1='©N', spin_id2='G@H', direct_bond=True)
interatom.set_dist (spin_id1='@N', spin_id2='@H', ave_dist=1.02 * 1le-10)
structure.get_pos ('QN')

structure.get_pos ('@H')

interatom.unit_vectors ()

Define the chemical shift relaxation interaction.
value.set (-172 * le-6, 'csa', spin_id='GN')

Select the model-free model.
model_free.select_model (model=name)

Minimise.
grid_search(inc=11)
minimise ('newton')

Write the results.
results.write(file='results', force=True)

Save the program state.
state.save('save', force=True)

7.4. MODEL-FREE MODEL SELECTION 95

7.3.2 All model-free models script mode — explanation

The above script is very similar in spirit to the previous single model script in section 7.2
on page 92. The major difference is that this script loops over all of the model-free models,
saving all of the results in the save.bz2 file.

7.4 Model-free model selection

7.4.1 Model-free model selection script mode — the sample script

The sample script which demonstrates both model-free model elimination and model-free
model selection between models from m0 to m9 is model_free/modsel.py. The text of
the script is:

Set the data pipe names.
pipes = ['m0', 'ml', 'm2', 'm3', 'm4', 'mb6', 'm6', 'm7', 'm8', 'm9']

Loop over the data pipe names.
for name in pipes:
print ("\n\n# " + name + " #")

Create the data pipe.
pipe.create(name, 'mf')

Reload precalculated results from the file 'ml/results', etc.
results.read(file='results', dir=name)

Model elimination.
eliminate ()

Model selection.
model_selection (method='AIC', modsel_pipe='aic')

Write the results.
state.save('save', force=True)
results.write(file='results', force=True)

7.4.2 Model-free model selection script mode — explanation

This script is designed to be used in conjunction with the model free/mf multimodel.py
script in the previous section. It will load all of the results files from the previous script
and then perform the following:

Model-free model elimination The optimisation of model-free models performed by
the previous script will fail for certain data sets together with certain models. To
ensure that these models are never selected, they are removed from the analysis (see
d’Auvergne and Gooley (2006)).

Model-free model selection The AIC model selection as described in
d’Auvergne and Gooley (2003) will be used to determine which model-free
model best describes the relaxation data.

96 CHAPTER 7. MODEL-FREE ANALYSIS

Data output Finally both a save state and result file will be created.

These three sample scripts describe the basic components of model-free analysis. However
a full analysis requires the construction of a much more complex iterative procedure. The
following sections will describe both the original diffusion seeded approaches as well as the
new model-free protocol built into relax.

7.5 The methodology of Mandel et al., 1995

By presenting a systematic methodology for obtaining a consistent model-free description
of the dynamics of the system, the manuscript of Mandel et al. (1995) revolutionised the
application of model-free analysis. The full protocol is presented in Figure 7.1.

All of the data analysis techniques required for this protocol can be implemented within
relax. The chi-squared distributions required for the chi-squared tests are constructed
by Modelfree4d from the Monte Carlo simulations. If the optimisation algorithms and
Monte Carlo simulations built into relax are utilised, then the relax script will need to
construct the chi-squared distributions from the results as this is not yet coded into relax.
The specific step-up hypothesis testing model selection of Mandel et al. (1995) is available
through the model_selection user function. Coding the rest of the protocol into a script
should be straightforward.

To implement this analysis, a number of scripts would need to be written. There is no
sample script in relax for performing this analysis. The simple sample scripts from above
would need to be extended. For example a starting script for determining the initial
diffusion tensor estimates based on the R1/R2 ratio of Kay et al. (1989) would have to
be written. The tensor from this script could then be feed into the model _free/mf_
multimodel.py script, followed by the model free/modsel.py script, and then a third
script written to optimise the diffusion tensor. A master script could be written first run
the initial diffusion tensor script, then to iteratively execute the last three scripts until
convergence, and finally to select the best diffusion model (see Figure 7.1). Alternatively,
these could all be combined into one super script.

7.6 The diffusion seeded paradigm

Ever since the original Lipari and Szabo papers (Lipari and Szabo, 1982a,b), the question
of how to obtain the model-free description of the system has followed the route in which
the diffusion tensor is initially estimated. Using this rough estimate, the model-free models
are optimised for each spin system i, the best model selected, and then the global model
G of the diffusion model ® with each model-free model §; is optimised. This procedure
is then repeated using the diffusion tensor parameters of & as the initial input. Finally
the global model is selected. The full protocol, when combined with AIC model selection
(d’Auvergne and Gooley, 2003), is illustrated in Figure 7.2.

Again this protocol is not implemented in the relax sample scripts. This would have to be
implemented in exactly the same manner as described in the previous section, but using
the AIC model selection build into relax. Constructing this set of scripts, or a single

7.6. THE DIFFUSION SEEDED PARADIGM 97

Final model
Si

‘m Convergence?

Yes

[Sphere] [Spheroid]

Figure 7.1: A schematic of the model-free optimisation protocol of Mandel et al. (1995).
This specific protocol is for single field strength data. The initial diffusion tensor estimate
is calculated using the Ry /R; ratio. The diffusion parameters of © are held constant while
model-free models m1 to m5 (7.21.1-7.21.5) of the set §; for each spin i are optimised and
500 Monte Carlo simulations executed. Using a web of ANOVA statistical tests, specifically
x? and F-tests, a step-up hypothesis testing model selection procedure is used to choose
the best model-free model. These steps are repeated for all spins of the molecule. The
global model &, the union of © and all §;, is then optimised. These steps are repeated
until convergence of the global model. The iterative process is repeated for both isotropic
diffusion (sphere) and anisotropic diffusion (spheroid).

98 CHAPTER 7. MODEL-FREE ANALYSIS

Initial estimate
o

(R:)

Optimise Optimise Optimise Optimise Optimise
mO ml m2 m3 m4 ... m9

(No) (No) (No) (No) (No)
AIC model
selection

Optimise global
model & o

@ Convergence?

Yes

Oblate Prolate : :
[Sphere] [spheroid] [spheroid] [Elhpsmd]

AIC model
selection

v

Figure 7.2: A schematic of model-free analysis using the diffusion seeded paradigm — the
initial diffusion tensor estimate — together with AIC model selection and model elimination.
The initial estimates of the parameters of ® are held constant while model-free models m0
to m9 (7.21.0-7.21.9) of the set §; for each spin system 7 are optimised, model elimination
applied to remove failed models, and AIC model selection used to determine the best
model. The global model &, the union of ® and all §;, is then optimised. These steps are
repeated until convergence of the global model. The entire iterative process is repeated for
each of the Brownian diffusion models. Finally AIC model selection is used to determine
the best description of the dynamics of the molecule by selecting between the global models
G including the sphere, oblate spheroid, prolate spheroid, and ellipsoid. Once the solution
has been found, Monte Carlo simulations can be utilised for error analysis.

7.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 99

master script, would be much easier than the Mandel et al. (1995) protocol as Modelfree4
would not need to be used, and the handling of F-tests and chi-squared tests is avoided.

7.7 The new model-free optimisation protocol

Here a new, fully automated model-free optimisation protocol will be presented. This
protocol, defined in d’Auvergne and Gooley (2007) and d’Auvergne and Gooley (2008c),
is significantly different from all those that came before, reversing the diffusion seeded
paradigm as detailed below. Within relax it is referred to as the “new protocol” or the
“d’Auvergne protocol”. The later name is to allow for more advanced protocols to be
developed and added to relax by adventurous users in the future. Note that for advanced
model-free analysis protocols, such as this one, that multiple field relaxation data is es-
sential.

7.7.1 The new protocol — model-free models

The study of the dynamics of a macromolecule using model-free analysis to interpret the
R and Rj relaxation rates together with the steady-state heteronuclear NOE brings two
distinct, yet linked physical theories into play. The Brownian rotational diffusion of the
molecule is the major contributor to relaxation. Although having less of an influence on
relaxation the internal dynamics of individual nuclei within the molecule is nevertheless
significant. The model-free description of the internal motion and the global diffusion of
the entire molecule are theories which are linked due to their dependence on the same relax-
ation data. The model-free models for individual spin system constructed from the original
and extended model-free theories (Lipari and Szabo, 1982a,b; Clore et al., 1990) are as-
sembled using parametric restrictions, the dropping of insignificant parameters, and the
addition of the chemical exchange parameter R.,. Labelled as m0 to m9 (Models 7.21.0—
7.21.9 on page 87) these models are an extended list of those in (Fushman et al., 1997;
Orekhov et al., 1999a; Korzhnev et al., 2001; Zhuravleva et al., 2004).

7.7.2 The new protocol — the diffusion tensor
The ellipsoid

The most general form of Brownian rotational diffusion of macromolecules is the diffusion
of an ellipsoid, a diffusion also labelled as asymmetric or fully anisotropic. This diffusion
tensor can be fully specified by the geometric parameters D, ©,, and D, the eigenvalues
of the tensor, as well as three orientational parameters, the Euler angles o, 3, and . The
diffusion equation for an ellipsoid was derived using the reasoning of Einstein (1905) in
the two papers of Perrin (1934) and Perrin (1936). Following this, Favro (1960) unknow-
ingly derived the same equations as presented in Perrin (1936) using a pseudo quantum
mechanical approach. Borrowing heavily from Perrin (1936), Woessner (1962) derived the
correlation function relevant for NMR relaxation of a bond vector rigidly attached to an
ellipsoid. However these equations are not fully simplified and the parameter set {®,,
Dy, D2, a, , v}, the eigenvalues and Euler angles defining the tensor, is not optimally

100 CHAPTER 7. MODEL-FREE ANALYSIS

constructed for minimisation. A parameter shift to the set {Dis0, Dq, Dr, a, 5, 7},
whereby the three geometric parameters are respectively the isotropic, anisotropic, and
rhombic components of the diffusion tensor, drastically simplifies optimisation and is how
the diffusion tensor is implemented within relax.

The spheroid

When two of the eigenvalues of the diffusion tensor are equal the molecule diffuses as a
spheroid. This is also called axially symmetric anisotropic diffusion and can be described by
the two geometric parameters ©;,, and », together with the polar angle 8 and azimuthal
angle ¢ which define the unique axis of the diffusion tensor. Two classes of spheroid can be
distinguished dependent on the relative values of the eigenvalues — the prolate and oblate
spheroids. By using parametric constraints, both tensor types can be optimised within
relax.

The sphere

The simplest form of diffusion occurs when all three eigenvalues are equal and the molecule
diffuses as a sphere. This isotropic rotation can be characterised by the single parame-
ter D;s, which is related to the global correlation time by the formula 1/7,, = 69,5,
(Bloembergen et al., 1948).

The local 7,,, model-free models

Not only can the diffusion tensor be optimised as a global model affecting all spins of
the molecule but a set of model-free models can be constructed in which each spin is
assumed to diffuse independently. In these models a single local 7,,, parameter approxi-
mates the true, multiexponential description of the Brownian rotational diffusion of the
molecule. Each spin of the macromolecule is treated independently. Another set of model-
free models which include the local 7,,, parameter can be created and include tm0 to tm9
(Models 7.22.0-7.22.9 on page 88). These are simply models m0 to m9 with the local 7,
parameter added. These models are an extension of the ideas introduced in Barbato et al.
(1992) and Schurr et al. (1994) whereby the model ¢tm2, the original Lipari and Szabo
model-free equation with a local 7,,, parameter, is optimised to avoid issues with inaccu-
rate diffusion tensor approximations.

Determination of the diffusion tensor from the local 7,,, parameter

In Briischweiler et al. (1995) and further investigated in Lee et al. (1997), a methodology
for determining the diffusion tensor from the local 7,,, parameter together with the orien-
tation of the XH bond represented by the unit vector u; was presented. A local 7, value
was obtained for each spin ¢ by optimising model tm2. The 7, ; values were approximated
using the quadric model

(67m,i) " = uf Qui, (7.35)

7.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 101

where the eigenvalues of the matrix) are defined as Q, = (D,+9.)/2, Qy = (D, +9.)/2,
and @, = (9D, +D,)/2. The diffusion tensor is then found by linear least-squares fitting.

7.7.3 The universal solution {4

The complex model-free problem, in which the motions of each spin are both mathemat-
ically and statistically dependent on the diffusion tensor and vice versa, was formulated
using set theory in d’Auvergne and Gooley (2007). This paper is important for under-
standing the entire concept of the new protocol in relax and for truly grasping the com-
plexity of the model-free problem. The solution 4 to the model-free problem was derived
as an element of the universal set 4, the union of the diverse model-free parameter spaces
G. Each set G was constructed from the union of the model-free models § for all spins and
the diffusion parameter set . A single parameter loss on a single spin shifts optimisation
to a different space &. Ever since the seminal work of Kay et al. (1989) the model-free
problem has been tackled by first finding an initial estimate of the diffusion tensor and then
determining the model-free dynamics of the system (see Sections 7.5 on page 96 and 7.6
on page 96). This diffusion seeded paradigm is now highly evolved and much theory has
emerged to improve this path to the solution Y. The technique can, at times, suffer from
a number of issues including the two minima problem of the spheroid diffusion tensor pa-
rameter space, the appearance of artificial chemical exchange (Tjandra et al., 1996), the
appearance of artificial nanosecond motions (Schurr et al., 1994), and the hiding of inter-
nal nanosecond motions caused by the violation of the rigidity assumption (Orekhov et al.,
1995, 1999a,b).

7.7.4 Model-free analysis in reverse

A different approach was proposed in d’Auvergne and Gooley (2008c¢) for finding the uni-
versal solution 4 of the extremely complex, convoluted model-free optimisation and mod-
elling problem (d’Auvergne and Gooley, 2007), defined as

U=0¢e {(‘5 : IpinAK_L(é)} . s.t. 0 =argmin {X2(9) :0e6}. (7.36)

(ST

This notation says that the minimised parameter vector within the space & which min-
imises the common Kullback-Leibler discrepancy Ay, is selected from the universal set 4
as the universal solution l. The discrepancy of Kullback and Leibler (1951) is a measure
of how well the model fits the data, in this case how well the global model & of the diffusion
tensor together with the model-free models of all residues fits the relaxation data. This
selection is subject to the condition that 6 is the argument or specific parameter vector
which minimises the chi-squared function x?(#) such that @ is an element of the space &.
Whereas the minimisation of the continuous chi-squared function within the single space
S belongs to the mathematical field of optimisation (Nocedal and Wright, 1999), the se-
lection of the universe & which minimises the discrepancy belongs to the statistical field of

model selection (Akaike, 1973; Schwarz, 1978; Linhart and Zucchini, 1986; Zucchini, 2000;
d’Auvergne and Gooley, 2003).

This new model-free optimisation protocol incorporates the ideas of the local 7, model-
free model (Barbato et al., 1992; Schurr et al., 1994) and the optimisation of the diffusion
tensor using information from these models, analogously to the linear least-squares fitting

102 CHAPTER 7. MODEL-FREE ANALYSIS

a (R N\
Optimise Optimise Optimise Optimise Optimise
tmO tm1l tm2 tm3 tm4 ... tm9

(Failltre?) (Fan:re?) (FaiI:re?) (Fan:re?) (Fan:re?)

AIC model
f selection
Repeat for

\

g o A

v

Kff ~ | FiX.CD \

& D ED @@ 6D
(Failure?) (Failure?) (Failure?) (Failure?) (Failure?)

AIC model Repeat for
_ selection each §;)

v

K « | Optimise global |
= model & @
Repeat for

\
K @_ each ®
\K P Yes ~_ /

e 4 N S ——

Oblate Prolate : . Hybrid global
| | h Ell
[oca L j [Sp ere] [spheroid] [spheroid] [Ipsoid [models j

AIC model
selection

v

Figure 7.3: A schematic of the new model-free optimisation protocol. Initially models
tm0 to tm9 (7.22.0-7.22.9) of the set ¥; for each spin system i are optimised, model
elimination used to remove failed models, and AIC model selection used to pick the best
model. Once all the T; have been determined for the system the the local 7,,, parameter is
removed, the model-free parameters are held fixed, and the global diffusion parameters of
© are optimised. These parameters are used as input for the central part of the schematic
which follows the same procedure as that of Figure 7.2. Convergence is however precisely
defined as identical models &, identical x? values, and identical parameters 6 between two
iterations. The universal solution 4, the best description of the dynamics of the molecule,
is determined using AIC model selection to select between the local 7, models for all
spins, the sphere, oblate spheroid, prolate spheroid, ellipsoid, and possibly hybrid models
whereby multiple diffusion tensors have been applied to different parts of the molecule.

7.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 103

of the quadric model (Briischweiler et al., 1995; Lee et al., 1997). The protocol also follows
the lead of the model-free optimisation protocol presented in Butterwick et al. (2004)
whereby the diffusion seeded paradigm was reversed. Rather than starting with an initial
estimation of the global diffusion tensor from the set © the protocol starts with the model-
free parameters from §.

The first step of the Butterwick et al. (2004) protocol is the reduced spectral density map-
ping of Farrow et al. (1995). As R, has been eliminated from the analysis, three model-
free models corresponding to tml, tm2, and tm5 (Models 7.22.1, 7.22.2, and 7.22.5 on
page 88) are employed. The model-free parameters are optimised using the reduced spec-
tral density values and the best model is selected using F-tests. The spherical, spheroidal,
and ellipsoidal diffusion tensors are obtained by linear least-squares fitting of the quadric
model of Equation (7.35) using the local 7,,, values (Briischweiler et al., 1995; Lee et al.,
1997). The best diffusion model is selected via F-tests and refined by iterative elimination
of spins systems with high chi-squared values. This tensor is used to calculate local 7,
values for each spin system, approximating the multiexponential sum of the Brownian ro-
tational diffusion correlation function with a single exponential, using the quadric model
of Equation (7.35). In the final step of the protocol these 7, values are fixed and ml,
m2, and m5 (Models 7.21.1, 7.21.2, and 7.21.5 on page 87) are optimised and the best
model-free model selected using F-tests.

The new model-free protocol built into relax utilises the core foundation of the
Butterwick et al. (2004) protocol yet its divergent implementation is designed to solve
the universal equation of d’Auvergne and Gooley (2007) to find 4 (Equation 7.36). Mod-
els tm0 to tm9 (7.22.0-7.22.9 on page 88) in which no global diffusion parameters exist are
employed to significantly collapse the complexity of the problem. Model-free minimisation
(d’Auvergne and Gooley, 2008b), model elimination (d’Auvergne and Gooley, 2006), and
then AIC model selection (Akaike, 1973; d’Auvergne and Gooley, 2003) can be carried out
in the absence of the influence of global parameters. By removing the local 7,,, parameter
and holding the model-free parameter values constant these models can then be used to
optimise the diffusion parameters of ®. Model-free optimisation, model elimination, AIC
model selection, and optimisation of the global model & is iterated until convergence. The
iterations allow for sliding between different universes & to enable the collapse of model
complexity, to refine the diffusion tensor, and to find the solution within the universal set
i1, The last step is the AIC model selection between the different diffusion models. Because
the AIC criterion approximates the Kullback-Leibler discrepancy (Kullback and Leibler,
1951), central to the universal solution of Equation (7.36), it was chosen for all three
model selection steps over BIC model selection (Schwarz, 1978; d’Auvergne and Gooley,
2003; Chen et al., 2004). The new protocol avoids the problem of under-fitting whereby
artificial motions appear, avoids the problems involved in finding the initial diffusion tensor
within D, and avoids the problem of hidden internal nanosecond motions and the inability
to slide between universes to get to Y (see d’Auvergne and Gooley (2007) for more details).
The full protocol is summarised in Figure 7.3.

104 CHAPTER 7. MODEL-FREE ANALYSIS

7.8 The new protocol in the prompt/script Ul mode

7.8.1 d’Auvergne protocol script mode — the sample script

The sample script for performing this new analysis is sample_scripts/model free/
dauvergne protocol.py. The full script is replicated below. The docstring at the start
of the script explains the practical implementation of the full protocol. If your copy of
the dauvergne protocol.py script taken from the same relax version as this manual does
not match the text below, please contact the relax developers via the relax-devel mailing
list (see section 3.2.3 on page 30). To use this script, copy it to a dedicated directory
containing your PDB file and relaxation data files. The protocol will produce many files
and directories, so it is best that these are placed within a dedicated and results directory.
The contents of the script are:

"""Script for black-box model-free analysis.

This script is designed for those who appreciate black-boxes or those who appreciate
complex code. Importantly data at multiple magnetic field strengths is essential for
this analysis. The script will need to be heavily tailored to the molecule in
question by changing the variables just below this documentation. If you would like
to change how model-free analysis is performed, the code in the class Main can be
changed as needed. For a description of object-oriented coding in python using
classes, functions/methods, self, etc., see the python tutorial.

If you have obtained this script without the program relax, please visit http://www.nmr-
relax.com.

References

The model-free optimisation methodology herein is that of:

d'Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic models II. A
new methodology for the dual optimisation of the model-free parameters and the
Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121-133

Other references for features of this script include model-free model selection using
Akaike's Information Criterion:

d'Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in the model-
free analysis of protein dynamics. J. Biomol. NMR, 25(1), 25-39.

The elimination of failed model-free models and Monte Carlo simulations:

d'Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new step
in the model-free dynamic analysis of NMR relaxation data. J. Biomol. NMR, 35(2),
117-135.

Significant model-free optimisation improvements:

d'Auvergne, E. J. and Gooley, P. R. (2008a). Optimisation of NMR dynamic models I.
Minimisation algorithms and their performance within the model-free and Brownian
rotational diffusion spaces. J. Biomol. NMR, 40(2), 107-109.

Rather than searching for the lowest chi-squared value, this script searches for the model
with the lowest AIC criterion. This complex multi-universe, multi-dimensional search
is formulated using set theory as the universal solution:

51

60
61

63
64

66

67

68

69

7.8. THE NEW PROTOCOL IN THE PROMPT/SCRIPT UI MODE 105

d'Auvergne, E. J. and Gooley, P. R. (2007). Set theory formulation of the model-free
problem and the diffusion seeded model-free paradigm. 3(7), 483-494.

The basic three references for the original and extended model-free theories are:

Lipari, G. and Szabo, A. (1982a). Model-free approach to the interpretation of nuclear
magnetic-resonance relaxation in macromolecules I. Theory and range of validity. J.
Am. Chem. Soc., 104(17), 4546-4559.

Lipari, G. and Szabo, A. (1982b). Model-free approach to the interpretation of nuclear
magnetic-resonance relaxation in macromolecules II. Analysis of experimental results.
J. Am. Chem. Soc., 104(17), 4559-4570.

Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., and Gronenborn, A.M.
(1990) . Deviations from the simple 2-parameter model-free approach to the
interpretation of N-15 nuclear magnetic-relaxation of proteins. J. Am. Chem. Soc.,
112(12), 4989-4991.

How to use this script

The value of the variable DIFF_MODEL will determine the behaviour of this script. The
five diffusion models used in this script are:

Model I (MI) Local tm.

Model IT (MII) - Sphere.

Model III (MIII) - Prolate spheroid.
Model IV (MIV) Oblate spheroid.
Model V. (MV) Ellipsoid.

Model I must be optimised prior to any of the other diffusion models, while the Models II
to V can be optimised in any order. To select the various models, set the variable
DIFF_MODEL to the following strings:

MI - 'local_tm'
MII - 'sphere'
MIII - 'prolate'
MIV - 'oblate'
MV - 'ellipsoid'

This approach has the advantage of eliminating the need for an initial estimate of a
global diffusion tensor and removing all the problems associated with the initial
estimate.

It is important that the number of parameters in a model does not exceed the number of
relaxation data sets for that spin. If this is the case, the list of models in the
MF_MODELS and LOCAL_TM_MODELS variables will need to be trimmed.

Model I - Local tm

This will optimise the diffusion model whereby all spin of the molecule have a local tm
value, i.e. there is no global diffusion tensor. This model needs to be optimised
prior to optimising any of the other diffusion models. Each spin is fitted to the
multiple model-free models separately, where the parameter tm is included in each
model.

AIC model selection is used to select the models for each spin.

76

78
79
80

81

83

84

90

95

96

97
98
99
100
101
102

103
104
105
106
107

108

106

CHAPTER 7. MODEL-FREE ANALYSIS

Model II - Sphere

This will optimise the isotropic diffusion model. Multiple steps are required, an initial

The

The

The

For

The

AIC

A1l

optimisation of the diffusion tensor, followed by a repetitive optimisation until
convergence of the diffusion tensor. Each of these steps requires this script to be
rerun. For the initial optimisation, which will be placed in the directory './sphere/
init/', the following steps are used:

model-free models and parameter values for each spin are set to those of diffusion
model MI.

local tm parameter is removed from the models.

model-free parameters are fixed and a global spherical diffusion tensor is minimised.

the repetitive optimisation, each minimisation is named from 'round_1' onwards. The
initial 'round_1' optimisation will extract the diffusion tensor from the results file
in './sphere/init/', and the results will be placed in the directory './sphere/

round_1/'. Each successive round will take the diffusion tensor from the previous

round. The following steps are used:

global diffusion tensor is fixed and the multiple model-free models are fitted to each
spin.

model selection is used to select the models for each spin.

model-free and diffusion parameters are allowed to vary and a global optimisation of
all parameters is carried out.

Model III - Prolate spheroid

The

methods used are identical to those of diffusion model MII, except that an axially
symmetric diffusion tensor with Da >= 0 is used. The base directory containing all
the results is './prolate/'.

Model IV - Oblate spheroid

The

methods used are identical to those of diffusion model MII, except that an axially
symmetric diffusion tensor with Da <= 0 is used. The base directory containing all
the results is './oblate/'.

Model V - Ellipsoid

The

methods used are identical to those of diffusion model MII, except that a fully
anisotropic diffusion tensor is used (also known as rhombic or asymmetric diffusion).
The base directory is './ellipsoid/'.

7.8. THE NEW PROTOCOL IN THE PROMPT/SCRIPT UI MODE 107

Once all the diffusion models have converged, the final run can be executed. This is done
by setting the variable DIFF_MODEL to 'final'. This consists of two steps, diffusion
tensor model selection, and Monte Carlo simulations. Firstly AIC model selection is
used to select between the diffusion tensor models. Monte Carlo simulations are then
run solely on this selected diffusion model. Minimisation of the model is bypassed as

it is assumed that the model is already fully optimised (if this is not the case the
final run is not yet appropriate).

The final black-box model-free results will be placed in the file 'final/results'.

nnn

Python module imports.
from time import asctime, localtime

relax module imports.
from auto_analyses.dauvergne_protocol import dAuvergne_protocol

Analysis variables.
HHEHEHEHHEHEHEHHE

The diffusion model.
DIFF_MODEL = 'local_tm'

The model-free models. Do not change these unless absolutely necessary, the protocol is
likely to fail if these are changed.

MF_MODELS = ['mO', 'ml', 'm2', 'm3', 'm4', 'm5', 'm6', 'm7', 'm8', 'm9'l]

LOCAL_TM_MODELS = ['tmO', 'tml', 'tm2', 'tm3', 'tm4', 'tm5', 'tm6', 'tm7', 'tm8', 'tm9'l]

The grid search size (the number of increments per dimension).
GRID_INC = 11

The optimisation technique.
MIN_ALGOR = 'mewton'

The number of Monte Carlo simulations to be used for error analysis at the end of the
analysis.
MC_NUM = 500

Automatic looping over all rounds until convergence (must be a boolean value of True or
False).
CONV_LOOP = True

Set up the data pipe.
R

The following sequence of user function calls can be changed as needed.

Create the data pipe.

pipe_bundle = "mf (%s)" % asctime(localtime())
name = "origin - " + pipe_bundle
pipe.create(name, 'mf', bundle=pipe_bundle)

Load the PDB file.
structure.read_pdb('1f3y.pdb', set_mol_name='Ap4Aase', read_model=3)

Set up the 15N and 1H spins (both backbone and Trp indole sidechains).
structure.load_spins ('@N', ave_pos=True)

108 CHAPTER 7. MODEL-FREE ANALYSIS

structure.load_spins ('@NE1l', ave_pos=True)
structure.load_spins ('@H', ave_pos=True)
structure.load_spins ('@HE1l', ave_pos=True)
spin.isotope('15N', spin_id='G@N*')
spin.isotope('1H', spin_id='QHx*')

Set up the 15N spins (alternative to the structure-based approach).

#sequence.read(file='noe.500.0out', dir=None, mol_name_col=1, res_num_col=2, res_name_col
=3, spin_num_col=4, spin_name_col=5)

#spin.element (element='N', spin_id='QNx')

#spin.isotope ('15N', spin_id='GQNx*')

Generate the 1H spins for the magnetic dipole-dipole relaxation interaction (alternative
to the structure-based approach).
#sequence.attach_protons ()

Load the relaxation data.

relax_data.read(ri_id='R1_600"', ri_type='R1', £rq=599.719*1le6, file='r1.600.out"',
mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5,
data_col=6, error_col=7)

relax_data.read (ri_id='R2