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Abstract

This is the proof document of the IsarMathLib project version 1.9.1.
IsarMathLib is a library of formalized mathematics for Isabelle 2013-2
(ZF logic).
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1 Introduction.thy

theory Introduction imports equalities
begin

This theory does not contain any formalized mathematics used in other
theories, but is an introduction to IsarMathLib project.

1.1 How to read IsarMathLib proofs - a tutorial

Isar (the Isabelle’s formal proof language) was designed to be similar to
the standard language of mathematics. Any person able to read proofs in
a typical mathematical paper should be able to read and understand Isar
proofs without having to learn a special proof language. However, Isar is
a formal proof language and as such it does contain a couple of constructs
whose meaning is hard to guess. In this tutorial we will define a notion
and prove an example theorem about that notion, explaining Isar syntax
along the way. This tutorial may also serve as a style guide for IsarMathLib
contributors. Note that this tutorial aims to help in reading the presentation
of the Isar language that is used in IsarMathLib proof document and HTML
rendering on the FormalMath.org site, but does not teach how to write proofs
that can be verified by Isabelle. This presentation is different than the
source processed by Isabelle (the concept that the source and presentation
look different should be familiar to any LaTeX user). To learn how to write
Isar proofs one needs to study the source of this tutorial as well.

The first thing that mathematicians typically do is to define notions. In Isar
this is done with the definition keyword. In our case we define a notion of
two sets being disjoint. We will use the infix notation, i.e. the string {is
disjoint with} put between two sets to denote our notion of disjointness.
The left side of the = symbol is the notion being defined, the right side
says how we define it. In Isabelle 0 is used to denote both zero (of natural
numbers) and the empty set, which is not surprising as those two things are
the same in set theory.

definition
AreDisjoint (infix {is disjoint with} 90) where
A {is disjoint with} B= A NB =0

We are ready to prove a theorem. Here we show that the relation of be-
ing disjoint is symmetric. We start with one of the keywords ”theorem”,
”lemma” or "corollary”. In Isar they are synonymous. Then we provide a
name for the theorem. In standard mathematics theorems are numbered. In
Isar we can do that too, but it is considered better to give theorems mean-
ingful names. After the "shows” keyword we give the statement to show.

10



The «+— symbol denotes the equivalence in Isabelle/ZF. Here we want to
show that ” A is disjoint with B iff and only if B is disjoint with A”. To prove
this fact we show two implications - the first one that A {is disjoint with}
B implies B {is disjoint with} A and then the converse one. Each of these
implications is formulated as a statement to be proved and then proved in a
subproof like a mini-theorem. Each subproof uses a proof block to show the
implication. Proof blocks are delimited with curly brackets in Isar. Proof
block is one of the constructs that does not exist in informal mathematics,
so it may be confusing. When reading a proof containing a proof block I sug-
gest to focus first on what is that we are proving in it. This can be done by
looking at the first line or two of the block and then at the last statement. In
our case the block starts with "assume A {is disjoint with} B and the last
statement is "then have B {is disjoint with} A”. It is a typical pattern
when someone needs to prove an implication: one assumes the antecedent
and then shows that the consequent follows from this assumption. Impli-
cations are denoted with the — symbol in Isabelle. After we prove both
implications we collect them using the ”moreover” construct. The keyword
”ultimately” indicates that what follows is the conclusion of the statements
collected with ”moreover”. The ”show” keyword is like "have”, except that
it indicates that we have arrived at the claim of the theorem (or a subproof).

theorem disjointness_symmetric:
shows A {is disjoint with} B ¢<— B {is disjoint with} A

(proof)

1.2 Overview of the project

The Fol1, ZF1 and Nat_ZF_IML theory files contain some background material
that is needed for the remaining theories.

Order_ZF and Order_ZF_ia reformulate material from standard Isabelle’s
Order theory in terms of non-strict (less-or-equal) order relations. Order_zF_1
on the other hand directly continues the Order theory file using strict order
relations (less and not equal). This is useful for translating theorems from
Metamath.

In NatOrder_ZF we prove that the usual order on natural numbers is linear.

The funci theory provides basic facts about functions. func_ZF continues
this development with more advanced topics that relate to algebraic proper-
ties of binary operations, like lifting a binary operation to a function space,
associative, commutative and distributive operations and properties of func-
tions related to order relations. func_ZF_1 is about properties of functions
related to order relations.

The standard Isabelle’s Finite theory defines the finite powerset of a set
as a certain "datatype” (?7) with some recursive properties. IsarMathLib’s
Finitel and Finite_ZF_1 theories develop more facts about this notion.

11



These two theories are obsolete now. They will be gradually replaced by
an approach based on set theory rather than tools specific to Isabelle. This
approach is presented in Finite_ZF theory file.

In FinOrd_ZF we talk about ordered finite sets.

The EquivClass1 theory file is a reformulation of the material in the standard
Isabelle’s EquivClass theory in the spirit of ZF set theory.

FiniteSeq_ZF discusses the notion of finite sequences (a.k.a. lists).
InductiveSeq_ZF provides the definition and properties of (what is known in
basic calculus as) sequences defined by induction, i. e. by a formula of the
form ag = x, ap+1 = f(an).

Fold_zF shows how the familiar from functional programming notion of fold
can be interpreted in set theory.

Partitions_ZF is about splitting a set into non-overlapping subsets. This is
a common trick in proofs.

Semigroup_ZF treats the expressions of the form ag-aj - .. - ay, (i.e. products
of finite sequences), where ”-” is an associative binary operation.
CommutativeSemigroup_ZF is another take on a similar subject. This time
we consider the case when the operation is commutative and the result of
depends only on the set of elements we are summing (additively speaking),
but not the order.

The Topology_ZF series covers basics of general topology: interior, closure,
boundary, compact sets, separation axioms and continuous functions.
Group_ZF, Group_ZF_1, Group_ZF_1b and Group_ZF_2 provide basic facts of the
group theory. Group_zF_3 considers the notion of almost homomorphisms
that is nedeed for the real numbers construction in Real_ZF.

The TopologicalGroup connects the Topology_ZF and Group_ZF series and
starts the subject of topological groups with some basic definitions and facts.
In DirectProduct_ZF we define direct product of groups and show some its
basic properties.

The OrderedGroup_ZF theory treats ordered groups. This is a suprisingly
large theory for such relatively obscure topic.

Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are
specific to the real numbers construction in Real_ZF.

The OrderedRing_ZF theory looks at the consequences of adding a linear
order to the ring algebraic structure.

Field_ZF and OrderedField_ZF contain basic facts about (you guessed it)
fields and ordered fields.

Int_ZF_IML theory considers the integers as a monoid (multiplication) and an
abelian ordered group (addition). In Int_ZF_1 we show that integers form
a commutative ring. Int_ZF_2 contains some facts about slopes (almost
homomorphisms on integers) needed for real numbers construction, used in

12



Real_ZF_1.

In the IntDiv_ZF_IML theory we translate some properties of the integer
quotient and reminder functions studied in the standard Isabelle’s IntDiv_ZF
theory to the notation used in IsarMathLib.

The Real_ZF and Real_ZF_1 theories contain the construction of real numbers
based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind
sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 and
Int_ZF_2. Real_ZF contains the part of the construction that can be done
starting from generic abelian groups (rather than additive group of integers).
This allows to show that real numbers form a ring. Real_ZF_1 continues the
construction using properties specific to the integers and showing that real
numbers constructed this way form a complete ordered field.

Cardinal_ZF provides a couple of theorems about cardinals that are mostly
used for studying properties of topological properties (yes, this is kind of
meta). The main result (proven without AC) is that if two sets can be
injectively mapped into an infinite cardinal, then so can be their union.
There is also a definition of the Axiom of Choice specific for a given cardinal
(so that the choice function exists for families of sets of given cardinality).
Some properties are proven for such predicates, like that for finite families of
sets the choice function always exists (in ZF) and that the axiom of choice
for a larger cardinal implies one for a smaller cardinal.

Group_ZF_4 considers conjugate of subgroup and defines simple groups. A
nice theorem here is that endomorphisms of an abelian group form a ring.
The first isomorphism theorem (a group homomorphism h induces an iso-
morphism between the group divided by the kernel of h and the image of h)
is proven.

Turns out given a property of a topological space one can define a local ver-
sion of a property in general. This is studied in the the Topology_ZF_properties_2
theory and applied to local versions of the property of being finite or com-
pact or Hausdorff (i.e. locally finite, locally compact, locally Hausdorff).
There are a couple of nice applications, like one-point compactification that
allows to show that every locally compact Hausdorff space is regular. Also
there are some results on the interplay between hereditability of a property
and local properties.

For a given surjection f : X — Y, where X is a topological space one can
consider the weakest topology on Y which makes f continuous, let’s call it
a quotient topology generated by f. The quotient topology generated by an
equivalence relation r on X is actually a special case of this setup, where f
is the natural projection of X on the quotient X/r. The properties of these
two ways of getting new topologies are studied in Topology_ZF_8 theory.
The main result is that any quotient topology generated by a function is
homeomorphic to a topology given by an equivalence relation, so these two

13



approaches to quotient topologies are kind of equivalent.

As we all know, automorphisms of a topological space form a group. This
fact is proven in Topology_zF_9 and the automorphism groups for co-cardinal,
included-set, and excluded-set topologies are identified. For order topologies
it is shown that order isomorphisms are homeomorphisms of the topology
induced by the order. Properties preserved by continuous functions are stud-
ied and as an application it is shown for example that quotient topological
spaces of compact (or connected) spaces are compact (or connected, resp.)

The Topology_zF_10 theory is about products of two topological spaces. It
is proven that if two spaces are Ty (or 11, T5, regular, connected) then their
product is as well.

Given a total order on a set one can define a natural topology on it gener-
ated by taking the rays and intervals as the base. The Topology_zF_11 the-
ory studies relations between the order and various properties of generated
topology. For example one can show that if the order topology is connected,
then the order is complete (in the sense that for each set bounded from
above the set of upper bounds has a minimum). For a given cardinal x we
can consider generalized notion of k — separability. Turns out k-separability
is related to (order) density of sets of cardinality  for order topologies.

Being a topological group imposes additional structure on the topology of the
group, in particular its separation properties. In Topological_Group_ZF_1.thy
theory it is shown that if a topology is Tp, then it must be T3 , and that the
topology in a topological group is always regular.

For a given normal subgroup of a topological group we can define a topology

on the quotient group in a natural way. At the end of the Topological_Group_ZF_2.thy
theory it is shown that such topology on the quotient group makes it a topo-

logical group.

The Topological Group_ZF_3.thy theory studies the topologies on subgroups

of a topological group. A couple of nice basic properties are shown, like

that the closure of a subgroup is a subgroup, closure of a normal subgroup

is normal and, a bit more surprising (to me) property that every locally-
compact subgroup of a Ty group is closed.

In Complex_ZF we construct complex numbers starting from a complete or-
dered field (a model of real numbers). We also define the notation for writing
about complex numbers and prove that the structure of complex numbers
constructed there satisfies the axioms of complex numbers used in Meta-
math.

MMI_prelude defines the mmisar0O context in which most theorems translated
from Metamath are proven. It also contains a chapter explaining how the
translation works.

In the Metamath_interface theory we prove a theorem that the mmisarO
context is valid (can be used) in the complex0 context. All theories us-
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ing the translated results will import the Metamath_interface theory. The
Metamath_sampler theory provides some examples of using the translated
theorems in the complex0 context.

The theories MMI_logic_and_sets, MMI_Complex, MMI_Complex_1 and MMI_Complex_2
contain the theorems imported from the Metamath’s set.mm database. As

the translated proofs are rather verbose these theories are not printed in

this proof document. The full list of translated facts can be found in the
Metamath_theorems.txt file included in the IsarMathLib distribution. The
MMI_examples provides some theorems imported from Metamath that are
printed in this proof document as examples of how translated proofs look
like.

end
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2 Foll.thy

theory Foll imports Trancl
begin

Isabelle/ZF builds on the first order logic. Almost everything one would
like to have in this area is covered in the standard Isabelle libraries. The
material in this theory provides some lemmas that are missing or allow for
a more readable proof style.

2.1 Notions and lemmas in FOL

This section contains mostly shortcuts and workarounds that allow to use
more readable coding style.

The next lemma serves as a workaround to problems with applying the
definition of transitivity (of a relation) in our coding style (any attempt to
do something like using trans_def results up Isabelle in an infinite loop).

lemma Foll_L2: assumes
Al: Vxyz. (x,y) Er Ay, z2) €r — (x, 2) €T
shows trans(r)

(proof )

Another workaround for the problem of Isabelle simplifier looping when the
transitivity definition is used.

lemma Foll_L3: assumes Al: trans(r) and A2: ( a,b) € r A (b,c) €r
shows ( a,c) € r
(proof)

There is a problem with application of the definition of asymetry for rela-
tions. The next lemma is a workaround.

lemma Foll_L4:
assumes Al: antisym(r) and A2: ( a,b) € r ( b,a) € r
shows a=b

(proof)

The definition below implements a common idiom that states that (perhaps
under some assumptions) exactly one of given three statements is true.

definition
Exactly_1_of_3_holds(p,q,r) =
(pvgvr) A (p — —q A =r) A (@ — —p A —-r) A (r — —p A Q)

The next lemma allows to prove statements of the form Exactly_1_of_3_holds(p,q,r).

lemma Foll_L5:
assumes pVqVr
and p — —q A —r
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and g — —p A —r

and r — —p A 7q

shows Exactly_1_of_3_holds(p,q,r)
(proof )

If exactly one of p, ¢, holds and p is not true, then ¢ or 7.

lemma Foll_L6:
assumes Al: —p and A2: Exactly_1_of_3_holds(p,q,r)
shows qVr

(proof)

If exactly one of p, ¢, holds and ¢ is true, then r can not be true.

lemma Foll_L7:
assumes Al: q and A2: Exactly_1_of_3_holds(p,q,r)
shows —r

(proof)

The next lemma demonstrates an elegant form of the Exactly_1_of_3_holds(p,q,T)
predicate. More on that at www.solcon.nl/mklooster/calc/calc-tri.html .

lemma Foll_L8:
shows Exactly_1_of_3_holds(p,q,r) <— (p<—q+—r) A —(pAgAT)
(proof )

A property of the Exactly_1_of_3_holds predicate.

lemma Foll_L8A: assumes Al: Exactly_1_of_3_holds(p,q,r)
shows p «— —(q V 1)
(proof )

Exclusive or definition. There is one also defined in the standard Isabelle,
denoted xor, but it relates to boolean values, which are sets. Here we define
a logical functor.

definition
Xor (infixl Xor 66) where
p Xor g = (pVg) A =(p A @
The ”exclusive or” is the same as negation of equivalence.

lemma Foll_L9: shows p Xor q +— —(p<—q)

{proof)

Equivalence relations are symmetric.

lemma equiv_is_sym: assumes Al: equiv(X,r) and A2: (x,y) € r
shows (y,x) € r

(proof)

end
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3 ZFl.thy

theory ZF1 imports equalities
begin

Standard Isabelle distribution contains lots of facts about basic set theory.
This theory file adds some more.

3.1 Lemmas in Zermelo-Fraenkel set theory

Here we put lemmas from the set theory that we could not find in the
standard Isabelle distribution.

If one collection is contained in another, then we can say the same abot their
unions.

lemma collection_contain: assumes ACB shows (JA C (JB
(proof)

If all sets of a nonempty collection are the same, then its union is the same.

lemma ZF1_1_L1: assumes C#0 and VyeC. b(y) = A
shows (|JyeC. b(y)) = A (proof)

The union af all values of a constant meta-function belongs to the same set
as the constant.

lemma ZF1_1_12: assumes A1:C#0 and A2: VxeC. b(x) € A
and A3: Vx y. x€C A yeC — b(x) = b(y)
shows (|JxeC. b(x))€A

(proof)

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. I am surprised Isabelle can not handle this
automatically.

lemma ZF1_1_14: assumes Al: VxeX.VyeY. a(x,y) = b(x,y)
shows {a(x,y). (x,y) € XxY} = {b(x,y). (x,y) € XxY}
(proof)

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. This is similar to ZF1_1_L4, except that the
set definition varies over peXxY rather than ( x,y)eXxY.

lemma ZF1_1_L4A: assumes Al: VxeX.VyeY. a({ x,y)) = b(x,y)
shows {a(p). p € XxY} = {b(x,y). (x,y) € XxY}
(proof )

A lemma about inclusion in cartesian products. Included here to remember
that we need the U x V # () assumption.
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lemma prod_subset: assumes UxV#£0 UxV C XxY shows UCX and VCY
(proof)

A technical lemma about sections in cartesian products.

lemma section_proj: assumes A C XxY and UxV C Aand x € U y € V
shows U C {teX. (t,y) € A} and V C {teY. (x,t) € A}
(proof )

If two meta-functions are the same on a set, then they define the same set
by separation.
lemma ZF1_1_L4B: assumes Vx€X. a(x) = b(x)

shows {a(x). x€X} = {b(x). x€X}

(proof )

A set defined by a constant meta-function is a singleton.
lemma ZF1_1_L5: assumes X#0 and VxeX. b(x) = ¢
shows {b(x). x€X} = {c} (proof)
Most of the time, auto does this job, but there are strange cases when the
next lemma is needed.

lemma subset_with_property: assumes Y = {x€X. b(x)}
shows Y C X

{proof )
We can choose an element from a nonempty set.
lemma nonempty_has_element: assumes X#0 shows Jx. x€X

(proof)

In Isabelle/ZF the intersection of an empty family is empty. This is exactly
lemma Inter_0 from Isabelle’s equalities theory. We repeat this lemma
here as it is very difficult to find. This is one reason we need comments
before every theorem: so that we can search for keywords.

lemma inter_empty_empty: shows [0 = 0 (proof)
If an intersection of a collection is not empty, then the collection is not

empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty.

lemma inter_nempty_nempty: assumes [|A # 0 shows A#0

(proof)

For two collections S, T of sets we define the product collection as the col-
lections of cartesian products A x B, where A€ S,B e T.

definition
ProductCollection(T,8) = |JUET.{UxV. VES}

The union of the product collection of collections S, T is the cartesian prod-
uct of |JS and YT
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lemma ZF1_1_L6: shows |J ProductCollection(S,T) = |JS x YT
(proof)

An intersection of subsets is a subset.

lemma ZF1_1_L7: assumes Al: I#0 and A2: Vie€I. P(i) C X
shows ( ((i€Il. P(i) ) C X
(proof)

Isabelle/ZF has a ?THE” construct that allows to define an element if there
is only one such that is satisfies given predicate. In pure ZF we can express
something similar using the indentity proven below.

lemma ZF1_1_18: shows |J {x} = x (proof)

Some properties of singletons.

lemma ZF1_1_19: assumes Al: 3! x. x€A A p(x)
shows
Ja. {x€A. px)} = {a}
U {xea. ox)} € A
e(lJ {xeA. px)D)
(proof )

A simple version of zZF1_1_L9.

corollary sigleton_extract: assumes d! x. x€A
shows (|J A) € A
(proof)

A criterion for when a set defined by comprehension is a singleton.

lemma singleton_comprehension:
assumes Al: yeX and A2: VxeX. VyeX. P(x) = P(y)
shows (|J{P(x). x€X}) = P(y)

(proof)

Adding an element of a set to that set does not change the set.

lemma set_elem_add: assumes x€X shows X U {x} = X (proof)

Here we define a restriction of a collection of sets to a given set. In romantic
math this is typically denoted X N M and means {X N A: A € M}. Note
there is also restrict(f, A) defined for relations in ZF.thy.

definition

RestrictedTo (infixl {restricted to} 70) where
M {restricted to} X = {X N A . A € M}

A lemma on a union of a restriction of a collection to a set.

lemma union_restrict:
shows |J (M {restricted to} X) = (UM N X

{proof)
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Next we show a technical identity that is used to prove sufficiency of some
condition for a collection of sets to be a base for a topology.

lemma ZF1_1_L10: assumes Al: YUeC. JA€B. U = [JA
shows U {J{aeB. U = |JA}. UeC} = UcC
(proof)

Standard Isabelle uses a notion of cons(A,a) that can be thought of as

AuU{a}.

lemma consdef: shows cons(a,A) = A U {a}

(proof)

If a difference between a set and a sigleton is empty, then the set is empty
or it is equal to the sigleton.
lemma singl_diff_empty: assumes A - {x} =0

shows A = 0 vV A = {x}

(proof )

If a difference between a set and a sigleton is the set, then the only element
of the singleton is not in the set.

lemma singl_diff_eq: assumes Al: A - {x} = A
shows x ¢ A
(proof)

A basic property of sets defined by comprehension. This is one side of
standard Isabelle’s separation that is in the simp set but somehow not
always used by simp.

lemma comprehension: assumes a € {x€X. p(x)}
shows a€X and p(a) (proof)

end
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4 Nat_ZF.thy

theory Nat_ZF_IML imports Arith
begin

The ZF set theory constructs natural numbers from the empty set and the
notion of a one-element set. Namely, zero of natural numbers is defined
as the empty set. For each natural number n the next natural number is
defined as n U {n}. With this definition for every non-zero natural number
we get the identity n = {0, 1,2,..,n — 1}. It is good to remember that when
we see an expression like f : n — X. Also, with this definition the relation
”less or equal than” becomes ”C” and the relation ”less than” becomes ”€”.

4.1 Induction

The induction lemmas in the standard Isabelle’s Nat.thy file like for example
nat_induct require the induction step to be a higher order statement (the
one that uses the = sign). I found it difficult to apply from Isar, which
is perhaps more of an indication of my Isar skills than anything else. Any-
way, here we provide a first order version that is easier to reference in Isar
declarative style proofs.

The next theorem is a version of induction on natural numbers that I was
thought in school.

theorem ind_on_nat:
assumes Al: ncnat and A2: P(0) and A3: Vkenat. P(k) —P(succ(k))
shows P(n)

(proof)

A nonzero natural number has a predecessor.

lemma Nat_ZF_1_L3: assumes Al: n € nat and A2: n#0
shows dkenat. n = succ(k)

(proof)

What is succ, anyway?

lemma succ_explained: shows succ(n) = n U {n}
{proof )

Empty set is an element of every natural number which is not zero.

lemma empty_in_every_succ: assumes Al: n € nat
shows 0 € succ(n)

(proof)

If one natural number is less than another then their successors are in the
same relation.
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lemma succ_ineq: assumes Al: n € nat
shows Vi € n. succ(i) € succ(n)

(proof)

For natural numbers if £ C n the similar holds for their successors.

lemma succ_subset: assumes Al: k € nat n € nat and A2: kCn
shows succ(k) C succ(n)

(proof)

For any two natural numbers one of them is contained in the other.

lemma nat_incl_total: assumes Al: i € nat j € nat
shows i C j v jCi
(proof)

The set of natural numbers is the union of all successors of natural numbers.

lemma nat_union_succ: shows nat = (|Jn € nat. succ(n))

{(proof)

Successors of natural numbers are subsets of the set of natural numbers.

lemma succnat_subset_nat: assumes Al: n € nat shows succ(n) C nat
(proof)

Element of a natural number is a natural number.

lemma elem_nat_is_nat: assumes Al: n € nat and A2: kén
shows k <n k € nat k < n (k,n) € Le

(proof)

The set of natural numbers is the union of its elements.

lemma nat_union_nat: shows nat = |J nat

(proof)

A natural number is a subset of the set of natural numbers.

lemma nat_subset_nat: assumes Al: n € nat shows n C nat
(proof)

Adding a natural numbers does not decrease what we add to.

lemma add_nat_le: assumes Al: n € nat and A2: k € nat
shows
n <n #+ k
n Cn#+ k
n Ck#+n

(proof)

Result of adding an element of k is smaller than of adding k.

lemma add_1t_mono:
assumes k € nat and j€k
shows
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(n #+ j) < (n #+ k)
(n #+ j) € (n #+ k)
(proof)

A technical lemma about a decomposition of a sum of two natural numbers:
if a number ¢ is from m + n then it is either from m or can be written as a
sum of m and a number from n. The proof by induction w.r.t. to m seems
to be a bit heavy-handed, but I could not figure out how to do this directly
from results from standard Isabelle/ZF.

lemma nat_sum_decomp: assumes Al: n € nat and A2: m € nat
shows Vi € m#+ n. 1 € m V (3j € n. 1 = m #+ j)

(proof)

A variant of induction useful for finite sequences.

lemma fin_nat_ind: assumes Al: n € nat and A2: k € succ(n)
and A3: P(0) and A4: Vjen. P(j) — P(succ(j))
shows P (k)

(proof)

Some properties of positive natural numbers.

lemma succ_plus: assumes n € nat k € nat
shows
succ(n #+ j) € nat
succ(n) #+ succ(j) = succ(succ(n #+ j))

(proof)

4.2 Intervals

In this section we consider intervals of natural numbers i.e. sets of the form
{n+j:7€0..k—1}.

The interval is determined by two parameters: starting point and length.
Recall that in standard Isabelle’s Arith.thy the symbol #+ is defined as the
sum of natural numbers.

definition

NatInterval(n,k) = {n #+ j. jek}

Subtracting the beginning af the interval results in a number from the length
of the interval.It may sound weird, but note that the length of such interval
is a natural number, hence a set.

lemma inter_diff_in_len:
assumes Al: k € nat and A2: i € NatInterval(n,k)
shows i #- n € k

(proof)
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Intervals don’t overlap with their starting point and the union of an interval
with its starting point is the sum of the starting point and the length of the
interval.

lemma length_start_decomp: assumes Al: n € nat k € nat
shows
n N NatInterval(n,k)
n U NatInterval(n,k)

(proof)

0
n #+ k

Sme properties of three adjacent intervals.

lemma adjacent_intervals3: assumes n € nat k € nat m € nat
shows
n#+ k #+m
n#+ k #+m
n#+ k #+m

{proof)

(n #+ k) U NatInterval(n #+ k,m)
n U NatInterval(n,k #+ m)
n U NatInterval(n,k) U NatInterval(n #+ k,m)

end
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5 Order_ZF.thy

theory Order_ZF imports Foll
begin

This theory file considers various notion related to order. We redefine the
notions of a total order, linear order and partial order to have the same
terminology as Wikipedia (I found it very consistent across different areas
of math). We also define and study the notions of intervals and bounded sets.
We show the inclusion relations between the intervals with endpoints being
in certain order. We also show that union of bounded sets are bounded.
This allows to show in Finite_ZF.thy that finite sets are bounded.

5.1 Definitions

In this section we formulate the definitions related to order relations.

A relation r is "total” on a set X if for all elements a,b of X we have a is
in relation with b or b is in relation with a. An example is the < relation on
numbers.

definition
IsTotal (infixl {is total on} 65) where
r {is total on} X = (VaeX.VbeX. ( a,b) € r V ( b,a) € r)

A relation r is a partial order on X if it is reflexive on X (i.e. (z,x) for
every x € X), antisymmetric (if (z,y) € r and (y,x) € r, then z = y) and
transitive (x,y) € r and (y, z) € r implies (z, z) € r).
definition

IsPartOrder(X,r) = (refl(X,r) A antisym(r) A trans(r))

We define a linear order as a binary relation that is antisymmetric, transitive
and total. Note that this terminology is different than the one used the
standard Order.thy file.

definition

IsLinOrder(X,r) = ( antisym(r) A trans(r) A (r {is total on} X))

A set is bounded above if there is that is an upper bound for it, i.e. there
are some u such that (r,u) € r for all z € A. In addition, the empty set is
defined as bounded.

definition
IsBoundedAbove(A,r) = ( A=0 V (Ju. Vx€A. { x,u) € 1))

We define sets bounded below analogously.

definition
IsBoundedBelow(A,r) = (A=0 V (31. VxeA. ( 1,x) € 1))
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A set is bounded if it is bounded below and above.

definition
IsBounded(A,r) = (IsBoundedAbove(A,r) A IsBoundedBelow(A,r))

The notation for the definition of an interval may be mysterious for some
readers, see lemma Order_zF_2_L1 for more intuitive notation.
definition
Interval(r,a,b) = r{a} N r-{b}
We also define the maximum (the greater of) two elemnts in the obvious
way.
definition
GreaterOf(r,a,b) = (if ( a,b) € r then b else a)
The definition a a minimum (the smaller of) two elements.
definition

Smaller0f(r,a,b) = (if ( a,b) € r then a else b)

We say that a set has a maximum if it has an element that is not smaller
that any other one. We show that under some conditions this element of
the set is unique (if exists).

definition
HasAmaximum(r,A) = IMeA.Vx€A. ( x,M) € r

A similar definition what it means that a set has a minimum.

definition
HasAminimum(r,A) = IJm€A.Vx€A. (m,x) € r

Definition of the maximum of a set.
definition

Maximum(r,A) = THE M. MeA A (Vxe€A. ( x,M) € 1)
Definition of a minimum of a set.

definition
Minimum(r,A) = THE m. meA A (Vx€A. ( m,x) € 1)

The supremum of a set A is defined as the minimum of the set of upper
bounds, i.e. the set {u.Voea(a,u) € 7} = [\,car{a}. Recall that in Is-
abelle/ZF r-(A) denotes the inverse image of the set A by relation r (i.e.
r-(A)={z: (z,y) € r for some y € A}).

definition
Supremum(r,A) = Minimum(r,[)acA. r{a})

Infimum is defined analogously.

definition
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Infimum(r,A) = Maximum(r,(|a€A. r-{a})

We define a relation to be complete if every nonempty bounded above set
has a supremum.

definition
IsComplete (_ {is completel}) where
r {is complete} =
VA. IsBoundedAbove(A,r) A A#0 — HasAminimum(r,()acA. r{a})

The essential condition to show that a total relation is reflexive.

lemma Order_ZF_1_L1: assumes r {is total on} X and acX
shows (a,a) € r (proof)

A total relation is reflexive.

lemma total_is_refl:
assumes r {is total on} X
shows refl(X,r) (proof)

A linear order is partial order.

lemma Order_ZF_1_L2: assumes IsLinOrder(X,r)
shows IsPartOrder(X,r)

(proof)

Partial order that is total is linear.

lemma Order_ZF_1_L3:
assumes IsPartOrder(X,r) and r {is total on} X
shows IsLinOrder(X,r)

{proof)

Relation that is total on a set is total on any subset.

lemma Order_ZF_1_L4: assumes r {is total on} X and ACX
shows r {is total on} A

(proof)

A linear relation is linear on any subset.

lemma ord_linear_subset: assumes IsLinOrder(X,r) and ACX
shows IsLinOrder(A,r)

(proof)
If the relation is total, then every set is a union of those elements that are
nongreater than a given one and nonsmaller than a given one.

lemma Order_ZF_1_L5:
assumes r {is total on} X and ACX and a€eX
shows A = {x€A. (x,a) € r} U {x€hA. (a,x) € r}
(proof )

A technical fact about reflexive relations.
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lemma refl_add_point:
assumes refl(X,r) and A C B U {x} and B C X and
x € X and VyeB. (y,x) € r
shows VachA. (a,x) € r

(proof)

5.2 Intervals
In this section we discuss intervals.

The next lemma explains the notation of the definition of an interval.

lemma Order_ZF_2_L1:
shows x € Interval(r,a,b) «— ( a,x) € r A { x,b) € r

(proof)

Since there are some problems with applying the above lemma (seems that
simp and auto don’t handle equivalence very well), we split Order_ZF_2_L1
into two lemmas.

lemma Order_ZF_2_L1A: assumes x € Interval(r,a,b)
shows ( a,x) € r (x,b) €r

(proof)

Order_ZF_2_L1, implication from right to left.

lemma Order_ZF_2_L1B: assumes ( a,x) € r ( x,b) € r
shows x € Interval(r,a,b)
(proof)

If the relation is reflexive, the endpoints belong to the interval.

lemma Order_ZF_2_L2: assumes refl(X,r)
and a€X beX and ( a,b) € r
shows
a € Interval(r,a,b)
b € Interval(r,a,b)
(proof)

Under the assumptions of Order_zF_2_L2, the interval is nonempty.

lemma Order_ZF_2_L2A: assumes refl(X,r)
and a€X beX and ( a,b) € r
shows Interval(r,a,b) # 0

(proof)

If a,b,c,d are in this order, then [b,c] C [a,d]. We only need trasitivity for
this to be true.

lemma Order_ZF_2_L3:

assumes Al: trans(r) and A2:( a,b)er ( b,c)er ( c,d)er
shows Interval(r,b,c) C Interval(r,a,d)
(proof)
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For reflexive and antisymmetric relations the interval with equal endpoints
consists only of that endpoint.

lemma Order_ZF_2_14:
assumes Al: refl(X,r) and A2: antisym(r) and A3: aeX
shows Interval(r,a,a) = {a}

(proof)

For transitive relations the endpoints have to be in the relation for the
interval to be nonempty.

lemma Order_ZF_2_L5: assumes Al: trans(r) and A2: ( a,b) ¢ r
shows Interval(r,a,b) =0

(proof)

If a relation is defined on a set, then intervals are subsets of that set.

lemma Order_ZF_2_L6: assumes Al: r C XxX
shows Interval(r,a,b) C X

(proof)

5.3 Bounded sets

In this section we consider properties of bounded sets.

For reflexive relations singletons are bounded.

lemma Order_ZF_3_L1: assumes refl(X,r) and acX
shows IsBounded({a},r)

(proof)

Sets that are bounded above are contained in the domain of the relation.

lemma Order_ZF_3_L1A: assumes r C XxX
and IsBoundedAbove(A,r)
shows ACX (proof)

Sets that are bounded below are contained in the domain of the relation.

lemma Order_ZF_3_L1B: assumes r C XxX
and IsBoundedBelow(A,r)
shows ACX (proof)

For a total relation, the greater of two elements, as defined above, is indeed
greater of any of the two.

lemma Order_ZF_3_L2: assumes r {is total on} X
and xeX yeX
shows
(x,Greater0f (r,x,y)) €
(y,Greater0f (r,x,y)) €
(SmallerOf(r,x,y),x) €
(SmallerOf (r,x,y),y) €
(proof )

H R R K
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If A is bounded above by u, B is bounded above by w, then AU B is bounded
above by the greater of u, w.

lemma Order_ZF_3_L2B:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ueX weX
and A4: Vx€A. ( x,u) € r Vx€B. ( x,w) € r
shows Vx€AUB. (x,Greater0f(r,u,w)) € r

(proof)

For total and transitive relation the union of two sets bounded above is
bounded above.

lemma Order_ZF_3_L3:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedAbove(A,r) IsBoundedAbove(B,r)
and A4: r C XxX
shows IsBoundedAbove(AUB,r)

(proof)

For total and transitive relations if a set A is bounded above then AU {a}
is bounded above.

lemma Order_ZF_3_L4:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedAbove(A,r) and A4: acX and A5: r C XxX
shows IsBoundedAbove(AU{a},r)

(proof)
If A is bounded below by [, B is bounded below by m, then AU B is bounded

below by the smaller of u, w.

lemma Order_ZF_3_L5B:
assumes Al: r {is total on} X and A2: trans(r)
and A3: 1€X meX
and A4: VxeA. ( 1,x) € r Vx€B. (m,x) € r
shows Vx€AUB. (Smaller0f(r,l,m),x) € r

(proof)

For total and transitive relation the union of two sets bounded below is
bounded below.

lemma Order_ZF_3_L6:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedBelow(A,r) IsBoundedBelow(B,r)
and A4: r C XxX
shows IsBoundedBelow(AUB,r)

(proof)

For total and transitive relations if a set A is bounded below then AU {a}
is bounded below.

lemma Order_ZF_3_L7:
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assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedBelow(A,r) and A4: acX and A5: r C XxX
shows IsBoundedBelow(AU{a},r)

(proof)

For total and transitive relations unions of two bounded sets are bounded.

theorem Order_ZF_3_T1:
assumes r {is total on} X and trans(r)
and IsBounded(A,r) IsBounded(B,r)
and r C XxX
shows IsBounded(AUB,T)

(proof)

For total and transitive relations if a set A is bounded then A U {a} is
bounded.

lemma Order_ZF_3_L8:
assumes r {is total on} X and trans(r)
and IsBounded(A,r) and acX and r C XxX
shows IsBounded(AU{a},r)

(proof)

A sufficient condition for a set to be bounded below.

lemma Order_ZF_3_L9: assumes Al: VacA. (1,a) € r
shows IsBoundedBelow(A,r)

(proof)

A sufficient condition for a set to be bounded above.

lemma Order_ZF_3_L10: assumes Al: VachA. (a,u) € r
shows IsBoundedAbove(A,r)

(proof)

Intervals are bounded.

lemma Order_ZF_3_L11: shows
IsBoundedAbove (Interval(r,a,b),r)
IsBoundedBelow(Interval(r,a,b),r)
IsBounded (Interval(r,a,b),r)

(proof )
A subset of a set that is bounded below is bounded below.

lemma Order_ZF_3_L12: assumes Al: IsBoundedBelow(A,r) and A2: BCA
shows IsBoundedBelow(B,r)

(proof )
A subset of a set that is bounded above is bounded above.

lemma Order_ZF_3_L13: assumes Al: IsBoundedAbove(A,r) and A2: BCA
shows IsBoundedAbove(B,r)

(proof)
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If for every element of X we can find one in A that is greater, then the A
can not be bounded above. Works for relations that are total, transitive and
antisymmetric, (i.e. for linear order relations).

lemma Order_ZF_3_L14:
assumes Al: r {is total on} X
and A2: trans(r) and A3: antisym(r)
and A4: r C XxX and A5: X#0
and A6: VxeX. JachA. x#a A (x,a) € r
shows —IsBoundedAbove(A,r)

(proof)

The set of elements in a set A that are nongreater than a given element is

bounded above.

lemma Order_ZF_3_L15: shows IsBoundedAbove({x€A. (x,a) € r},r)
(proof)

If A is bounded below, then the set of elements in a set A that are nongreater

than a given element is bounded.

lemma Order_ZF_3_L16: assumes Al: IsBoundedBelow(A,r)
shows IsBounded({x€A. (x,a) € r},r)

(proof)

end
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6 Order_ZF _1.thy

theory Order_ZF_1 imports Order ZF1
begin

In Order_ZzF we define some notions related to order relations based on the
nonstrict orders (< type). Some people however prefer to talk about these
notions in terms of the strict order relation (< type). This is the case for the
standard Isabelle Order.thy and also for Metamath. In this theory file we
repeat some developments from Order_ZzF using the strict order relation as
a basis. This is mostly useful for Metamath translation, but is also of some
general interest. The names of theorems are copied from Metamath.

6.1 Definitions and basic properties

In this section we introduce some definitions taken from Metamath and
relate them to the ones used by the standard Isabelle Order.thy.

The next definition is the strict version of the linear order. What we write
as R Orders A is written ROrdA in Metamath.

definition

StrictOrder (infix Orders 65) where
R Orders A = Vx y z. (x€A A yeA A z€d) —
({(x,y) € R +— —(x=y V (y,%X) € R)) A
({x,y) € R A (y,z) € R — (x,2) € R)

The definition of supremum for a (strict) linear order.

definition
Sup(B,A,R) =
U {x € A. (VyeB. {(x,y) ¢ R) A
(Vyeh. (y,x) € R — (3z€B. (y,z) € R))}

Definition of infimum for a linear order. It is defined in terms of supremum.

definition
Infim(B,A,R) = Sup(B,A,converse(R))

If relation R orders a set A, (in Metamath sense) then R is irreflexive,
transitive and linear therefore is a total order on A (in Isabelle sense).

lemma orders_imp_tot_ord: assumes Al: R Orders A
shows
irrefl(A,R)
trans[A] (R)
part_ord(A,R)
linear(A,R)
tot_ord(A,R)
(proof)
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A converse of orders_imp_tot_ord. Together with that theorem this shows
that Metamath’s notion of an order relation is equivalent to Isabelles tot_ord
predicate.

lemma tot_ord_imp_orders: assumes Al: tot_ord(A,R)
shows R Orders A

{(proof)

6.2 Properties of (strict) total orders

In this section we discuss the properties of strict order relations. This con-
tinues the development contained in the standard Isabelle’s Order.thy with
a view towards using the theorems translated from Metamath.

A relation orders a set iff the converse relation orders a set. Going one
way we can use the the lemma tot_od_converse from the standard Isabelle’s
Order.thy.The other way is a bit more complicated (note that in Isabelle for
converse(converse(r)) = r one needs r to consist of ordered pairs, which
does not follow from the StrictOrder definition above).

lemma cnvso: shows R Orders A <— converse(R) Orders A

(proof)

Supremum is unique, if it exists.

lemma supeu: assumes Al: R Orders A and A2: x€A and
A3: VyeB. (x,y) ¢ R and A4: VyeA. (y,x) € R — ( Iz€B. (y,z) € R)
shows
J1x. xeAA(VyeB. (x,y) ¢ R) A (VyeA. (y,x) € R — ( JzeB. (y,z) €
R))
(proof)

Supremum has expected properties if it exists.

lemma sup_props: assumes Al: R Orders A and

A2: JxehA. (VyeB. (x,y) ¢ R) A (VyeA. (y,x) € R — ( Jz€B. (y,z) €
R))

shows

Sup(B,A,R) € A

VyeB. (Sup(B,A,R),y) ¢ R

VyeA. (y,Sup(B,A,R)) € R — ( Jz€B. (y,z) € R )
(proof)

Elements greater or equal than any element of B are greater or equal than
supremum of B.
lemma supnub: assumes Al: R Orders A and A2:
JxeA. (VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — ( Jz€B. (y,z) € R))
and A3: c € A and A4: Vz€B. (c,z) ¢ R
shows (c, Sup(B,A,R)) ¢ R
(proof)

end
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7 Order_ZF _la.thy

theory Order_ZF_la imports Order_ZF

begin

This theory is a continuation of Order_ZF and talks about maximuma and
minimum of a set, supremum and infimum and strict (not reflexive) versions
of order relations.

7.1 DMaximum and minimum of a set

In this section we show that maximum and minimum are unique if they
exist. We also show that union of sets that have maxima (minima) has a
maximum (minimum). We also show that singletons have maximum and
minimum. All this allows to show (in Finite_ZF) that every finite set has
well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

lemma Order_ZF_4_L1: assumes Al: antisym(r) and A2: HasAmaximum(r,A)
shows 3 !M. MeA A (Vx€A. ( x,M) € r)

(proof)

For antisymmetric relations minimum of a set is unique if it exists.

lemma Order_ZF_4_L2: assumes Al: antisym(r) and A2: HasAminimum(r,A)
shows 3 '!'m. meA A (Vx€A. ( m,x) € r)

(proof)

Maximum of a set has desired properties.

lemma Order_ZF_4_L3: assumes Al: antisym(r) and A2: HasAmaximum(r,A)
shows Maximum(r,A) € A Vx€A. (x,Maximum(r,A)) € r

(proof)

Minimum of a set has desired properties.

lemma Order_ZF_4_L4: assumes Al: antisym(r) and A2: HasAminimum(r,A)
shows Minimum(r,A) € A Vx€A. (Minimum(r,A),x) € ¢

(proof)

For total and transitive relations a union a of two sets that have maxima
has a maximum.
lemma Order_ZF_4_L5:

assumes Al: r {is total on} (AUB) and A2: trans(r)

and A3: HasAmaximum(r,A) HasAmaximum(r,B)
shows HasAmaximum(r,AUB)

(proof)

For total and transitive relations A union a of two sets that have minima
has a minimum.
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lemma Order_ZF_4_L6:
assumes Al: r {is total on} (AUB) and A2: trans(r)
and A3: HasAminimum(r,A) HasAminimum(r,B)
shows HasAminimum(r,AUB)

(proof)

Set that has a maximum is bounded above.

lemma Order_ZF_4_L7:
assumes HasAmaximum(r,A)
shows IsBoundedAbove(A,r)

{proof)

Set that has a minimum is bounded below.

lemma Order_ZF_4_L8A:
assumes HasAminimum(r,A)
shows IsBoundedBelow(A,r)

(proof)

For reflexive relations singletons have a minimum and maximum.

lemma Order_ZF_4_18: assumes refl(X,r) and acX
shows HasAmaximum(r,{a}) HasAminimum(r,{a})

(proof)

For total and transitive relations if we add an element to a set that has a
maximum, the set still has a maximum.

lemma Order_ZF_4_L9:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ACX and A4: acX and A5: HasAmaximum(r,A)
shows HasAmaximum(r,AU{a})

(proof)

For total and transitive relations if we add an element to a set that has a
minimum, the set still has a minimum.

lemma Order_ZF_4_L10:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ACX and A4: acX and A5: HasAminimum(r,A)
shows HasAminimum(r,AU{a})

(proof)

If the order relation has a property that every nonempty bounded set attains
a minimum (for example integers are like that), then every nonempty set
bounded below attains a minimum.

lemma Order_ZF_4_L11:
assumes Al: r {is total on} X and
A2: trans(r) and
A3: r C XxX and
A4: VA. IsBounded(A,r) A A#0 — HasAminimum(r,A) and
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A5: B#0 and A6: IsBoundedBelow(B,r)
shows HasAminimum(r,B)

(proof)

A dual to Order_zF_4_L11: If the order relation has a property that every
nonempty bounded set attains a maximum (for example integers are like
that), then every nonempty set bounded above attains a maximum.

lemma Order_ZF_4_L11A:
assumes Al: r {is total on} X and
A2: trans(r) and
A3: r C XxX and
A4: VA. IsBounded(A,r) A A#0 — HasAmaximum(r,A) and
A5: B#0 and A6: IsBoundedAbove(B,r)
shows HasAmaximum(r,B)

(proof)

If a set has a minimum and L is less or equal than all elements of the set,
then L is less or equal than the minimum.

lemma Order_ZF_4_L12:
assumes antisym(r) and HasAminimum(r,A) and VacA. (L,a) € r
shows (L,Minimum(r,A)) € r

{proof)

If a set has a maximum and all its elements are less or equal than M, then
the maximum of the set is less or equal than M.

lemma Order_ZF_4_L13:
assumes antisym(r) and HasAmaximum(r,A) and VacA. (a,M) € r
shows (Maximum(r,A),M) € r

(proof)

If an element belongs to a set and is greater or equal than all elements of
that set, then it is the maximum of that set.

lemma Order_ZF_4_L14:
assumes Al: antisym(r) and A2: M € A and
A3: VacA. (a,M) € r
shows Maximum(r,A) = M

(proof)

If an element belongs to a set and is less or equal than all elements of that
set, then it is the minimum of that set.
lemma Order_ZF_4_L15:

assumes Al: antisym(r) and A2: m € A and

A3: VaehA. (m,a) € r

shows Minimum(r,A) = m

(proof)

If a set does not have a maximum, then for any its element we can find one
that is (strictly) greater.
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lemma Order_ZF_4_L16:
assumes Al: antisym(r) and A2: r {is total on} X and
A3: ACX and
A4: —HasAmaximum(r,A) and
A5: x€cA
shows JyecA. (x,y) € r A y#x
(proof)

7.2 Supremum and Infimum
In this section we consider the notions of supremum and infimum a set.

Elements of the set of upper bounds are indeed upper bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L1: assumes u € ([|a€A. r{a}) and ach
shows (a,u) € r

(proof)

Elements of the set of lower bounds are indeed lower bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L2: assumes 1 € ([|a€A. r-{a}) and acA
shows (1,a) € r

(proof)

If the set of upper bounds has a minimum, then the supremum is less or equal
than any upper bound. We can probably do away with the assumption that
A is not empty, (ab)using the fact that intersection over an empty family is
defined in Isabelle to be empty.

lemma Order_ZF_5_L3: assumes Al: antisym(r) and A2: A#0 and
A3: HasAminimum(r,()acA. r{a}) and
A4: YachA. (a,u) € r
shows (Supremum(r,A),u) € r

(proof )

Infimum is greater or equal than any lower bound.

lemma Order_ZF_5_L4: assumes Al: antisym(r) and A2: A#0 and
A3: HasAmaximum(r,()a€cA. r-{a}) and
A4: YaehA. (1,a) € r
shows (1,Infimum(r,A)) € r

(proof)

If z is an upper bound for A and is greater or equal than any other upper
bound, then z is the supremum of A.

lemma Order_ZF_5_L5: assumes Al: antisym(r) and A2: A#0 and
A3: VxeA. (x,z) € r and
A4: Vy. (Vx€A. (x,y) € r) — (z,y) € r
shows
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HasAminimum(r,()acA. r{al})
z = Supremum(r,A)

(proof)
If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:
assumes Al: antisym(r) and A2: A#0 and
A3: HasAmaximum(r,A)
shows
HasAminimum(r,()acA. r{al})
Maximum(r,A) = Supremum(r,A)

(proof)

Properties of supremum of a set for complete relations.

lemma Order_ZF_5_L7:
assumes Al: r C XxX and A2: antisym(r) and
A3: r {is complete} and
Ad: ACX A#0 and A5: IxeX. Vy€A. (y,x) € r
shows
Supremum(r,A) € X
Vx€A. (x,Supremum(r,A)) € r

(proof)

If the relation is a linear order then for any element y smaller than the
supremum of a set we can find one element of the set that is greater than y.

lemma Order_ZF_5_L8:
assumes Al: r C XxX and A2: IsLinOrder(X,r) and
A3: r {is complete} and
A4: ACX A#0 and A5: IxeX. Vy€A. (y,x) € r and
A6: (y,Supremum(r,A)) € r y # Supremum(r,A)
shows JzeA. (y,z) € r ANy # z

(proof )

7.3 Strict versions of order relations

One of the problems with translating formalized mathematics from Meta-
math to IsarMathLib is that Metamath uses strict orders (of the < type)
while in IsarMathLib we mostly use nonstrict orders (of the < type). This
doesn’t really make any difference, but is annoying as we have to prove
many theorems twice. In this section we prove some theorems to make it
easier to translate the statements about strict orders to statements about
the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the y = x line from the
relation.

definition
StrictVersion(r) = r - {(x,x). x € domain(r)}
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A reformulation of the definition of a strict version of an order.

lemma def_of_strict_ver: shows
(x,y) € StrictVersion(r) +— (x,y) € ¥ A x#y
{proof )

The next lemma is about the strict version of an antisymmetric relation.

lemma strict_of_antisym:
assumes Al: antisym(r) and A2: (a,b) € StrictVersion(r)
shows (b,a) ¢ StrictVersion(r)

(proof)

The strict version of totality.

lemma strict_of_tot:
assumes r {is total on} X and a€X beX a#b
shows (a,b) € StrictVersion(r) V (b,a) € StrictVersion(r)

(proof)

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

lemma strict_ans_tot_trich:
assumes Al: antisym(r) and A2: r {is total on} X
and A3: acX beX
and A4: s = StrictVersion(r)
shows Exactly_1_of_3_holds({a,b) € s, a=b,(b,a) € s)
(proof)

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

corollary strict_lin_trich: assumes Al: IsLinOrder(X,r) and
A2: acX beX and
A3: s = StrictVersion(r)
shows Exactly_1_of_3_holds({a,b) € s, a=b,(b,a) € s)
(proof )

For an antisymmetric relation if a pair is in relation then the reversed pair
is not in the strict version of the relation.

lemma geq_impl_not_less:
assumes Al: antisym(r) and A2: (a,b) € r
shows (b,a) ¢ StrictVersion(r)

(proof)

If an antisymmetric relation is transitive, then the strict version is also
transitive, an explicit version strict_of_transB below.

lemma strict_of_transA:
assumes Al: trans(r) and A2: antisym(r) and
A3: s= StrictVersion(r) and A4: (a,b) € s (b,c) € s
shows (a,c) € s

(proof)
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If an antisymmetric relation is transitive, then the strict version is also
transitive.

lemma strict_of_transB:
assumes Al: trans(r) and A2: antisym(r)
shows trans(StrictVersion(r))

(proof)

The next lemma provides a condition that is satisfied by the strict version
of a relation if the original relation is a complete linear order.

lemma strict_of_compl:

assumes Al: r C XxX and A2: IsLinOrder(X,r) and

A3: r {is complete} and

Ad: ACX A#0 and A5: s = StrictVersion(r) and

A6: JueX. VyehA. (y,u) € s

shows

JxeX. (Vyeh. (x,y) ¢ s ) AN (VyeX. (y,x) € s — (Jz€A. (y,z) € 8))
(proof)

Strict version of a relation on a set is a relation on that set.

lemma strict_ver_rel: assumes Al: r C AXA
shows StrictVersion(r) C AxA

(proof)

end
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8 NatOrder_ZF.thy

theory NatOrder_ZF imports Nat_ZF_IML Order_ZF
begin

This theory proves that < is a linear order on N. < is defined in Isabelle’s
Nat theory, and linear order is defined in Order_ZF theory. Contributed by
Seo Sanghyeon.

8.1 Order on natural numbers
This is the only section in this theory.

To prove that < is a total order, we use a result on ordinals.

lemma NatOrder_ZF_1_L1:
assumes acnat and beEnat
shows a < b V b < a

(proof)

< is antisymmetric, transitive, total, and linear. Proofs by rewrite using
definitions.

lemma NatOrder_ZF_1_L2:
shows
antisym(Le)
trans (Le)
Le {is total on} nat
IsLinOrder (nat,Le)

(proof)

The order on natural numbers is linear on every natural number. Recall
that each natural number is a subset of the set of all natural numbers (as
well as a member).

lemma natord_lin_on_each_nat:
assumes Al: n € nat shows IsLinOrder(n,Le)

(proof)

end
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9 funcl.thy

theory funcl imports func Foll ZF1
begin

This theory covers basic properties of function spaces. A set of functions
with domain X and values in the set Y is denoted in Isabelle as X — Y. It
just happens that the colon ”:” is a synonym of the set membership symbol
€ in Isabelle/ZF so we can write f : X — Y instead of f € X — Y. This is
the only case that we use the colon instead of the regular set membership

symbol.

9.1 Properties of functions, function spaces and (inverse) im-
ages.

Functions in ZF are sets of pairs. This means that if f : X — Y then
f € X xY. This section is mostly about consequences of this understanding
of the notion of function.

We define the notion of function that preserves a collection here. Given two
collection of sets a function preserves the collections if the inverse image
of sets in one collection belongs to the second one. This notion does not
have a name in romantic math. It is used to define continuous functions
in Topology_ZF_2 theory. We define it here so that we can use it for other
purposes, like defining measurable functions. Recall that £-(A) means the
inverse image of the set A.

definition

PresColl(f,S,T) = V A€eT. f-(A)€S
A definition that allows to get the first factor of the domain of a binary
function f: X XY — Z.
definition

fstdom(f) = domain(domain(f))
If a function maps A into another set, then A is the domain of the function.
lemma funci_1_L1: assumes f:A—C shows domain(f) = A

(proof)

Standard Isabelle defines a function(f) predicate. the next lemma shows
that our function satisfy that predicate. It is a special version of Isabelle’s

fun_is_function.

lemma fun_is_fun: assumes f:X—Y shows function(f)
(proof )

A lemma explains what fstdom is for.
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lemma fstdomdef: assumes Al: f: XXY — Z and A2: Y#0
shows fstdom(f) = X

(proof)

A first-order version of Pi_type.

lemma funci_1_L1A: assumes Al: f:X—Y and A2: VxeX. f(x) € Z
shows f:X—Z

(proof)

A variant of func1l_1_L1A.

lemma funcl_1_L1B: assumes Al: f:X—Y and A2: YCZ
shows f:X—7Z

(proof)

There is a value for each argument.

lemma funci_1_L2: assumes Al: f:X—Y =x&X
shows JyeY. (x,y) € £
(proof)

The inverse image is the image of converse. True for relations as well.

lemma vimage_converse: shows r-(A) = converse(r) (A)

{proof)

The image is the inverse image of converse.

lemma image_converse: shows converse(r)-(A) = r(A)

(proof)

The inverse image by a composition is the composition of inverse images.
lemma vimage_comp: shows (r 0 s)-(A) = s-(r-(4))

(proof)
A version of vimage_comp for three functions.

lemma vimage_comp3: shows (r 0 s 0 t)-(4) = t-(s-(r-(A)))

(proof)

Inverse image of any set is contained in the domain.

lemma func1_1_L3: assumes Al: f:X—Y shows f-(D) C X

(proof)

The inverse image of the range is the domain.

lemma funci_1_L4: assumes f:X—Y shows f-(Y) = X
(proof )

The arguments belongs to the domain and values to the range.

lemma funci_1_L5:
assumes Al: ( x,y) € £ and A2: f:X—Y
shows x€X A yeY
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(proof)

Function is a subset of cartesian product.

lemma fun_subset_prod: assumes Al: f:X—Y shows f C XxY
(proof)

The (argument, value) pair belongs to the graph of the function.

lemma funci_1_L5A:
assumes Al: f:X—Y xeX y = £(x)
shows (x,y) € £ y € range(f)
(proof)
The next theorem illustrates the meaning of the concept of function in ZF.

theorem fun_is_set_of_pairs: assumes Al: f:X—Y
shows f = {(x, f(x)). x € X}
(proof)

The range of function thet maps X into Y is contained in Y.

lemma funcil_1_L5B:
assumes Al: f:X—Y shows range(f) C Y

(proof)
The image of any set is contained in the range.

lemma funci_1_L6: assumes Al: f:X—Y
shows £(B) C range(f) and £f(B) C Y

(proof)

The inverse image of any set is contained in the domain.

lemma funci_1_L6A: assumes Al: f:X—Y shows f-(A)CX

(proof)

Image of a greater set is greater.

lemma funci_1_L8: assumes Al: ACB shows f(A)C £(B)
(proof )

A set is contained in the the inverse image of its image. There is similar
theorem in equalities.thy (function_image_vimage) which shows that the
image of inverse image of a set is contained in the set.

lemma funcl_1_19: assumes Al: f:X—Y and A2: ACX
shows A C f-(f(4))
(proof)

The inverse image of the image of the domain is the domain.

lemma inv_im_dom: assumes Al: f:X—Y shows f-(f(X)) = X

(proof)

A technical lemma needed to make the func1_1_L11 proof more clear.
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lemma func1_1_L10:
assumes Al: £ C XxY and A2: T!y. (yeY A (x,y) € £)
shows Jly. (x,y) € £

(proof)

If f C X xY and for every x € X there is exactly one y € Y such that
(z,y) € f then f maps X to Y.

lemma func1_1_L11:
assumes f C XxY and Vxe€X. Ily. yeY A (x,y) € £
shows f: X—Y (proof)

A set defined by a lambda-type expression is a fuction. There is a similar
lemma in func.thy, but I had problems with lambda expressions syntax so I
could not apply it. This lemma is a workaround for this. Besides, lambda
expressions are not readable.

lemma funcl_1_L11A: assumes Al: VxcX. b(x) € Y
shows {( x,y) € XxY. b(x) = y} : XY
(proof)

The next lemma will replace func1_1_L11A one day.

lemma ZF_fun_from_total: assumes Al: VxeX. b(x) € Y
shows {(x,b(x)). x€X} : X—=Y
(proof)

The value of a function defined by a meta-function is this meta-function.

lemma funci_1_L11B:
assumes Al: f:X—Y xeX
and A2: f = {( x,y) € XxY. b(x) = y}
shows f(x) = b(x)

(proof)

The next lemma will replace func1_1_L11B one day.

lemma ZF_fun_from_tot_val:
assumes Al: f:X—Y xeX
and A2: f = {(x,b(x)). x€X}
shows f(x) = b(x)

(proof)

Identical meaning as ZF_fun_from_tot_val, but phrased a bit differently.

lemma ZF_fun_from_tot_valO:
assumes f:X—Y and f = {(x,b(x)). xeX}
shows VxeX. £f(x) = b(x)
(proof)

Another way of expressing that lambda expression is a function.

lemma lam_is_fun_range: assumes f={(x,g(x)). x€X}
shows f:X—range(f)
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(proof)

Yet another way of expressing value of a function.

lemma ZF_fun_from_tot_vall:
assumes x€X shows {(x,b(x)). x€X}(x)=b(x)
(proof)

We can extend a function by specifying its values on a set disjoint with the
domain.

lemma func1l_1_L11C: assumes Al: f:X—Y and A2: Vx€A. b(x)€EB
and A3: XNA = 0 and Dg: g = £ U {(x,b(x)). x€A}
shows
g : XUA — YUB
VxeX. gx) = £(x)
Vxeh. gx) = b(x)

(proof)

We can extend a function by specifying its value at a point that does not
belong to the domain.

lemma funci_1_L11D: assumes Al: f:X—Y and A2: a¢X
and Dg: g = £ U {(a,b)}
shows
g : Xu{a} — YU{b}
VzeX. gx) = £(x)
gla) = b
(proof)

A technical lemma about extending a function both by defining on a set
disjoint with the domain and on a point that does not belong to any of
those sets.

lemma funci_1_L11E:
assumes Al: f:X—Y and
A2: Vx€eA. b(x)€eB and
A3: XNA = 0 and A4: a¢ XUA
and Dg: g = £ U {(x,b(x)). x€A} U {(a,c)}
shows
g : XUAU{a} — YUBU{c}
VxeX. gx) = £(x)
Vxeh. gx) = b(x)
g(a) = ¢

(proof)

A way of defining a function on a union of two possibly overlapping sets. We
decompose the union into two differences and the intersection and define a
function separately on each part.

lemma fun_union_overlap: assumes Vx€AMB. h(x) € Y Vxe€A-B. f(x) €
Y VxeB-A. g(x) €Y
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shows {(x,if x€A-B then f(x) else if x€B-A then g(x) else h(x)). x
€ AUB}: AUB — Y
(proof)

Inverse image of intersection is the intersection of inverse images.

lemma invim_inter_inter_invim: assumes f:X—Y
shows f-(ANB) = f-(A) N f-(B)
(proof)

The inverse image of an intersection of a nonempty collection of sets is the
intersection of the inverse images. This generalizes invim_inter_inter_invim
which is proven for the case of two sets.

lemma funci_1_L12:
assumes Al: B C Pow(Y) and A2: B#0 and A3: f:X—Y
shows f-((\B) = ((NUeB. £-(U))

(proof)

The inverse image of a set does not change when we intersect the set with
the image of the domain.

lemma inv_im_inter_im: assumes f:X—Y
shows f-(A N f(X)) = £-(4)

(proof)

If the inverse image of a set is not empty, then the set is not empty. Proof
by contradiction.
lemma funci_1_L13: assumes Al:f-(A) # 0 shows A#0
(proof )
If the image of a set is not empty, then the set is not empty. Proof by
contradiction.
lemma funci_1_L13A: assumes Al: f(A)#0 shows A0
(proof )
What is the inverse image of a singleton?

lemma funci_1_L14: assumes fcX—Y
shows f-({y}) = {xeX. £(x) = y}
(proof )

A lemma that can be used instead fun_extension_iff to show that two
functions are equal

lemma func_eq: assumes f: X—=Y g: X—=Z
and VzxeX. £f(x) = g(x)
shows f = g (proof)

Function defined on a singleton is a single pair.

lemma func_singleton_pair: assumes Al: f : {a}—X
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shows f = {(a, f(a))}
(proof)

A single pair is a function on a singleton. This is similar to singleton_fun

from standard Isabelle/ZF.

lemma pair_func_singleton: assumes Al: y € Y
shows {(x,y)} : {x} — Y
(proof)
The value of a pair on the first element is the second one.
lemma pair_val: shows {(x,y)}(x) =y
(proof)
A more familiar definition of inverse image.

lemma funci_1_L15: assumes Al: f:X—Y
shows f-(A) = {xeX. f(x) € A}
(proof)

A more familiar definition of image.

lemma func_imagedef: assumes Al: f:X—Y and A2: ACX
shows f(A) = {f(x). x € A}
(proof)

The image of a set contained in domain under identity is the same set.
lemma image_id_same: assumes ACX shows id(X) (A) = A

{proof )
The inverse image of a set contained in domain under identity is the same
set.
lemma vimage_id_same: assumes ACX shows id(X)-(A) = A

{proof )
What is the image of a singleton?

lemma singleton_image:
assumes feX—Y and xeX
shows f{x} = {f(x)}
(proof)

If an element of the domain of a function belongs to a set, then its value
belongs to the imgage of that set.

lemma funci_1_L15D: assumes f:X—Y =xcA ACX
shows f(x) € f(A)
(proof )

Range is the image of the domain. Isabelle/ZF defines range (£) as domain(converse(£)),
and that’s why we have something to prove here.

lemma range_image_domain:
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assumes Al: f:X—Y shows f(X) = range(f)
(proof)

The difference of images is contained in the image of difference.

lemma diff_image_diff: assumes Al: f: X—Y and A2: ACX
shows f(X) - £(A) C f(X-4)
(proof)

The image of an intersection is contained in the intersection of the images.

lemma image_of_Inter: assumes Al: f:X—Y and
A2: I#0 and A3: VieI. P(i) C X
shows f(((i€Il. P(i)) C ( (Niel. £(P@)) )
(proof)

The image of union is the union of images.

lemma image_of_Union: assumes Al: f:X—Y and A2: VAeM. ACX
shows f(UM) = [J{£f(a). AeM}
(proof )

The image of a nonempty subset of domain is nonempty.

lemma funcil_1_L15A:
assumes Al: f: X—Y and A2: ACX and A3: A#0
shows f(A) # 0

(proof)

The next lemma allows to prove statements about the values in the domain
of a function given a statement about values in the range.

lemma funci_1_L15B:
assumes f:X—Y and ACX and Vyef(4). P(y)
shows VxeA. P(£f(x))

(proof)

An image of an image is the image of a composition.

lemma funcl_1_L15C: assumes Al: f:X—=Y and A2: g:Y—=Z
and A3: ACX

shows

g(f(A)) = {g(f(x)). x€A}

g(£(A)) = (g 0 £)(A)
(proof)

What is the image of a set defined by a meta-fuction?

lemma funci_1_L17:
assumes Al: f € X—Y and A2: Vx€A. b(x) € X
shows f({b(x). x€A}) = {£(b(x)). x€A}

{(proof)

What are the values of composition of three functions?
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lemma func1_1_L18: assumes Al: f:A—B g:B—C h:C—D
and A2: x€A
shows
(h0g0f)x) €D
(h0g0f)& =h(glE))
(proof)

A composition of functions is a function. This is a slight generalization of
standard Isabelle’s comp_fun

lemma comp_fun_subset:
assumes Al: g:A—B and A2: f:C—D and A3: B C C
shows £ 0g : A =D

(proof)

This lemma supersedes the lemma comp_eq_id_iff in Isabelle/ZF. Con-
tributed by Victor Porton.

lemma comp_eq_id_iffl: assumes Al: g: B—A and A2: f: A—C
shows (VyeB. f(g(y)) =y) «— £ 0 g = id(B)
(proof)

A lemma about a value of a function that is a union of some collection of
functions.

lemma fun_Union_apply: assumes Al: |[JF : X—Y and
A2: feF and A3: f:A—B and A4: x€A
shows (UF) (x) = £(x)

(proof)

9.2 Functions restricted to a set

Standard Isabelle/ZF defines the notion restrict (£,A) of to mean a function
(or relation) f restricted to a set. This means that if f is a function defined
on X and A is a subset of X then restrict(f,A) is a function whith the
same values as f, but whose domain is A.

What is the inverse image of a set under a restricted fuction?

lemma funcl1_2_L1: assumes Al: f:X—Y and A2: BCX
shows restrict(f,B)-(A) = f-(A) N B

(proof)

A criterion for when one function is a restriction of another. The lemma
below provides a result useful in the actual proof of the criterion and appli-
cations.

lemma funcl_2_L2:
assumes Al: f:X—Y and A2: g € A—Z
and A3: ACX and A4: f N AXZ =g
shows VxeA. g(x) = £(x)

(proof)
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Here is the actual criterion.

lemma funcl_2_L3:
assumes Al: f:X—Y and A2: g:A—Z
and A3: ACX and A4: f N AXZ =g
shows g = restrict(f,A)

(proof)

Which function space a restricted function belongs to?

lemma funcl_2_L4:
assumes Al: f:X—Y and A2: ACX and A3: VxeA. f(x) € Z
shows restrict(f,A) : A—Z

(proof)

A simpler case of func1_2_L4, where the range of the original and restricted
function are the same.

corollary restrict_fun: assumes Al: f:X—Y and A2: ACX
shows restrict(f,A) : A — Y

(proof)

A composition of two functions is the same as composition with a restriction.

lemma comp_restrict:
assumes Al: f : A—B and A2: g : X — C and A3: BCX
shows g 0 f = restrict(g,B) O £

(proof)

A way to look at restriction. Contributed by Victor Porton.

lemma right_comp_id_any: shows r 0 id(C) = restrict(r,C)

{proof)

9.3 Constant functions

Constant functions are trivial, but still we need to prove some properties to
shorten proofs.
We define constant(= ¢) functions on a set X in a natural way as ConstantFunction(X, ¢).

definition
ConstantFunction(X,c) = Xx{c}

Constant function belongs to the function space.

lemma func1_3_L1:
assumes Al: c€Y shows ConstantFunction(X,c) : X—Y

(proof)

Constant function is equal to the constant on its domain.

lemma funci1_3_L2: assumes Al: xcX
shows ConstantFunction(X,c) (x) = ¢

(proof)
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9.4 Injections, surjections, bijections etc.

In this section we prove the properties of the spaces of injections, surjections
and bijections that we can’t find in the standard Isabelle’s Perm.thy.

For injections the image a difference of two sets is the difference of images

lemma inj_image_dif:
assumes Al: f € inj(A,B) and A2: C C A
shows f(A-C) = £(A) - £(C)

(proof )

For injections the image of intersection is the intersection of images.

lemma inj_image_inter: assumes Al: f € inj(X,Y) and A2: ACX BCX
shows £(ANB) = £(4) N £(B)

(proof )

For surjection from A to B the image of the domain is B.

lemma surj_range_image_domain: assumes Al: f € surj(A,B)
shows f(A) = B
(proof)

For injections the inverse image of an image is the same set.

lemma inj_vimage_image: assumes f € inj(X,Y) and ACX
shows f-(£(4)) = A
(proof)

For surjections the image of an inverse image is the same set.

lemma surj_image_vimage: assumes Al: f € surj(X,Y) and A2: ACY
shows f(f-(A)) = A
(proof )

A lemma about how a surjection maps collections of subsets in domain and
rangge.

lemma surj_subsets: assumes Al: f € surj(X,Y) and A2: B C Pow(Y)
shows { f(U). U € {f-(V). VEB} } = B
(proof)

Restriction of an bijection to a set without a point is a a bijection.

lemma bij_restrict_rem:

assumes Al: f € bij(A,B) and A2: acA

shows restrict(f, A-{a}) € bij(A-{a}, B-{f(a)})
(proof)

The domain of a bijection between X and Y is X.

lemma domain_of_bij:
assumes Al: f € bij(X,Y) shows domain(f) = X

(proof)
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The value of the inverse of an injection on a point of the image of a set
belongs to that set.

lemma inj_inv_back_in_set:
assumes Al: f € inj(A,B) and A2: CCA and A3: y € £(C)
shows
converse(f) (y) € C
f(converse(f)(y)) =y
(proof)

For injections if a value at a point belongs to the image of a set, then the
point belongs to the set.
lemma inj_point_of_image:
assumes Al: f € inj(A,B) and A2: CCA and
A3: x€A and A4d: f(x) € £(C)
shows x € C
(proof)

For injections the image of intersection is the intersection of images.

lemma inj_image_of_Inter: assumes Al: f € inj(A,B) and
A2: I#0 and A3: Vi€I. P(i) C A
shows f(i€l. P(i)) = ( Niel. f(P(i)) )

(proof )

An injection is injective onto its range. Suggested by Victor Porton.

lemma inj_inj_range: assumes f € inj(A,B)
shows f € inj(A,range(£))
(proof )

An injection is a bijection on its range. Suggested by Victor Porton.

lemma inj_bij_range: assumes f € inj(A,B)
shows f € bij(A,range(£))
(proof)

A lemma about extending a surjection by one point.

lemma surj_extend_point:
assumes Al: f € surj(X,Y) and A2: a¢X and
A3: g = £ U {(a,b)}
shows g € surj(XU{al},YU{b})

(proof)

A lemma about extending an injection by one point. Essentially the same
as standard Isabelle’s inj_extend.

lemma inj_extend_point: assumes f € inj(X,Y) a¢X bé¢yY
shows (f U {(a,b)}) € inj(XU{a},YU{b})
(proof)

A lemma about extending a bijection by one point.
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lemma bij_extend_point: assumes f € bij(X,Y) a¢X by
shows (f U {(a,b)}) € bij(Xu{a},YU{b})
{proof )

A quite general form of the a~'b = 1 implies a = b law.

lemma comp_inv_id_eq:
assumes Al: converse(b) 0 a = id(A) and
A2: a C AXB b € surj(4,B)
shows a = b

(proof)

A special case of comp_inv_id_eq - the a™'b = 1 implies a = b law for
bijections.
lemma comp_inv_id_eq_bij:

assumes Al: a € bij(A,B) b € bij(A,B) and

A2: converse(b) 0 a = id(A)
shows a = b

(proof)

Converse of a converse of a bijection the same bijection. This is a special
case of converse_converse from standard Isabelle’s equalities theory where
it is proved for relations.

lemma bij_converse_converse: assumes a € bij(A,B)

shows converse(converse(a)) = a
(proof)

If a composition of bijections is identity, then one is the inverse of the other.

lemma comp_id_conv: assumes Al: a € bij(4,B) b € bij(B,A) and
A2: b 0 a = id(A)
shows a = converse(b) and b = converse(a)

(proof)

A version of comp_id_conv with weaker assumptions.

lemma comp_conv_id: assumes Al: a € bij(A,B) and A2: b:B—A and
A3: VxeA. b(a(x)) = x
shows b € bij(B,A) and a = converse(b) and b = converse(a)

(proof)

For a surjection the union if images of singletons is the whole range.

lemma surj_singleton_image: assumes Al: f € surj(X,Y)
shows (|JxeX. {f(x)}) =Y
(proof)

9.5 Functions of two variables

In this section we consider functions whose domain is a cartesian product
of two sets. Such functions are called functions of two variables (although
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really in ZF all functions admit only one argument). For every function of
two variables we can define families of functions of one variable by fixing the
other variable. This section establishes basic definitions and results for this
concept.

We can create functions of two variables by combining functions of one
variable.

lemma cart_prod_fun: assumes f;:X;—Y; f2:X—Y, and
g = {(p,(f1(£st(p)),£2(snd(p)))). p € X1 XXz}
shows g: XixXy — Y1XYs (proof)

A reformulation of cart_prod_fun above in a sligtly different notation.

lemma prod_fun:

assumes f:X;—Xy g:X3—X4

shows {((x,y),(fx,gy)). (x,y)EX1xX3}: X1 xX3—>XaxXy
(proof)

Product of two surjections is a surjection.

theorem prod_functions_surj:
assumes fesurj(A,B) ge&surj(C,D)
shows {((al,a2),(fal,ga2)).(al,a2)€AxC} € surj(AxC,BxD)

(proof)

For a function of two variables created from functions of one variable as in
cart_prod_fun above, the inverse image of a cartesian product of sets is the
cartesian product of inverse images.

lemma cart_prod_fun_vimage: assumes f;:X;—Y; f9:X—Yy and
g = {(p,(f1(£fst(p)),f2(snd(p)))). p € X1 xX2}
shows g-(A1xA2) = £1-(A;) X f2-(A2)

(proof)

For a function of two variables defined on X x Y, if we fix an x € X we
obtain a function on Y. Note that if domain(f) is X X Y, range(domain(£f))
extracts Y from X x Y.

definition
FixlstVar(f,x) = {(y,f(x,y)). y € range(domain(f))}

For every y € Y we can fix the second variable in a binary function f :
X XY — Z to get a function on X.

definition
Fix2ndVar(f,y) = {(x,f(x,y)). x € domain(domain(£))}

We defined FixlstVar and Fix2ndVar so that the domain of the function is
not listed in the arguments, but is recovered from the function. The next
lemma is a technical fact that makes it easier to use this definition.

lemma fix_var_fun_domain: assumes Al: f : XxY — Z
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shows

x€X — FixistVar(f,x) = {(y,f(x,y)). y € Y}

yE€Y — Fix2ndVar(f,y) f(x,y)). x € X}
(proof)

1
-~

=2
4

If we fix the first variable, we get a function of the second variable.

lemma fix_1st_var_fun: assumes Al: f : XxY — Z and A2: x€X
shows FixlstVar(f,x) : Y — Z

(proof)

If we fix the second variable, we get a function of the first variable.

lemma fix_2nd_var_fun: assumes Al: f : XxXY — Z and A2: yeY
shows Fix2ndVar(f,y) : X — Z

(proof)

What is the value of Fix1stVar (f,x) at y € Y and the value of Fix2ndVar (f,y)
at x € X77

lemma fix_var_val:
assumes Al: f : XXY — Z and A2: xe€X yevY
shows
FixlstVar(f,x) (y)
Fix2ndVar (f,y) (x)
(proof)

£(x,y)
(x,y)

f(x,y

Fixing the second variable commutes with restrictig the domain.

lemma fix_2nd_var_restr_comm:
assumes Al: f : XxXY — Z and A2: yeY and A3: X; C X
shows Fix2ndVar (restrict(f,X;xY),y) = restrict(Fix2ndVar(f,y),X;)

(proof)

The next lemma expresses the inverse image of a set by function with fixed
first variable in terms of the original function.
lemma fix_1st_var_vimage:
assumes Al: f : XXY — Z and A2: xeX
shows FixlstVar(f,x)-(4) = {y€Y. (x,y) € £-(A)}
(proof)

The next lemma expresses the inverse image of a set by function with fixed
second variable in terms of the original function.

lemma fix_2nd_var_vimage:
assumes Al: f : XXY — Z and A2: yeY
shows Fix2ndVar(f,y)-(A) = {x€X. (x,y) € £-(A)}

(proof)

end
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10 func_ ZF.thy

theory func_ZF imports funcil
begin

In this theory we consider properties of functions that are binary operations,
that is they map X x X into X.

10.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and
we need a similar operation that is defined for functions on that set. For
example once we know how to add real numbers we also know how to add
real-valued functions: for f,g: X — R we define (f + g)(z) = f(z) + g(z).
Note that formally the + means something different on the left hand side of
this equality than on the right hand side. This section aims at formalizing
this process. We will call it "lifting to a function space”, if you have a
suggestion for a better name, please let me know.

Since we are writing in generic set notation, the definition below is a bit
complicated. Here it what it says: Given a set X and another set f (that
represents a binary function on X') we are defining f lifted to function space
over X as the binary function (a set of pairs) on the space F' = X — range(f)
such that the value of this function on pair (a, b) of functions on X is another
function ¢ on X with values defined by ¢(x) = f(a(z),b(x)).

definition
Lift2FcnSpce (infix {lifted to function space over} 65) where
f {lifted to function space over} X =

{( p,{(x,f(fst(p) (x),snd(p) (x))). x € X}).

p € (X—range(f)) x (X—range(£))}

The result of the lift belongs to the function space.

lemma func_ZF_1_L1:
assumes Al: f : YXY—=Y
and A2: p €(X—range(f)) x (X—range(£))
shows
{(x,f(fst(p) (x),snd(p) (x))). x € X} : X—range(f)
{proof )

The values of the lift are defined by the value of the liftee in a natural way.

lemma func_ZF_1_L2:
assumes Al: f : YXY—=Y
and A2: p € (X—range(f))x (X—range(f)) and A3: xeX
and A4: P = {(x,f(fst(p) (x),snd(p) x))). x € X}
shows P(x) = f(fst(p) (x),snd(p) (x))

(proof)
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Function lifted to a function space results in function space operator.

theorem func_ZF_1_L3:
assumes f : YXY—=Y
and F = f {lifted to function space over} X
shows F : (X—range(f)) x (X—range(f))—(X—range(f))

(proof)

The values of the lift are defined by the values of the liftee in the natural
way.
theorem func_ZF_1_L4:

assumes Al: f : YXY—=Y

and A2: F = f {lifted to function space over} X
and A3: s:X—range(f) r:X—range(f)

and A4: xeX
shows (F(s,r)) (x) = f(s(x),r(x))
(proof)

10.2 Associative and commutative operations

In this section we define associative and commutative operations and prove
that they remain such when we lift them to a function space.

” "

Typically we say that a binary operation on a set (G is "associative” if
(x-y)-z=ua-(y-2) for all z,y,z € G. Our actual definition below does
not use the multiplicative notation so that we can apply it equally to the
additive notation + or whatever infix symbol we may want to use. Instead,
we use the generic set theory notation and write P(x,y) to denote the value
of the operation P on a pair (x,y) € G x G.

definition
IsAssociative (infix {is associative on} 65) where
P {is associative on} G = P : GXG—G A
V xe€eG VyeG Vzeaqa.
( PCPUx,y)),2z)) = PC (x,PUy,z))) )))

A binary function f: X x X — Y is commutative if f(z,y) = f(y,x). Note
that in the definition of associativity above we talk about binary ”operation”
and here we say use the term binary ”function”. This is not set in stone,
but usually the word ”operation” is used when the range is a factor of
the domain, while the word ”function” allows the range to be a completely
unrelated set.

definition
IsCommutative (infix {is commutative on} 65) where
f {is commutative on} G = Vx€G. VyeG. f(x,y) = £(y,x)

The lift of a commutative function is commutative.

lemma func_ZF_2_L1:
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assumes Al: £ : GXG—G

and A2: F = f {lifted to function space over} X
and A3: s : X—range(f) r : X—range(f)

and A4: f {is commutative on} G

shows F(s,r) = F(r,s)

(proof)

The lift of a commutative function is commutative on the function space.

lemma func_ZF_2_L2:
assumes f : GXG—G
and f {is commutative on} G
and F = f {lifted to function space over} X
shows F {is commutative on} (X—range(f))

(proof)

The lift of an associative function is associative.

lemma func_ZF_2_L3:
assumes A2: F = f {lifted to function space over} X
and A3: s : X—range(f) r : X—range(f) q : X—range(f)
and A4: f {is associative on} G
shows F(F(s,r),q) = F(s,F(r,q))

(proof)

The lift of an associative function is associative on the function space.

lemma func_ZF_2_L4:
assumes Al: f {is associative on} G
and A2: F = f {lifted to function space over} X
shows F {is associative on} (X—range(f))

(proof)

10.3 Restricting operations

In this section we consider conditions under which restriction of the opera-
tion to a set inherits properties like commutativity and associativity.

The commutativity is inherited when restricting a function to a set.

lemma func_ZF_4_L1:
assumes Al: f:XxX—Y and A2: ACX
and A3: f {is commutative on} X
shows restrict(f,AxA) {is commutative on} A

(proof)

Next we define what it means that a set is closed with respect to an opera-
tion.

definition
IsOpClosed (infix {is closed under} 65) where
A {is closed under} f = Vx€A. VyeA. f(x,y) € A
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Associative operation restricted to a set that is closed with resp. to this
operation is associative.

lemma func_ZF_4_L2:assumes Al: f {is associative on} X
and A2: ACX and A3: A {is closed under} f
and A4: xcA yeA zeA
and A5: g = restrict(f,AxA)
shows g(g(x,y),2) = g(x.g(y,2))
(proof)

An associative operation restricted to a set that is closed with resp. to this
operation is associative on the set.

lemma func_ZF_4_L3: assumes Al: f {is associative on} X
and A2: ACX and A3: A {is closed under} f
shows restrict(f,AxA) {is associative on} A

(proof)

The essential condition to show that if a set A is closed with respect to an
operation, then it is closed under this operation restricted to any superset
of A.

lemma func_ZF_4_L4: assumes A {is closed under} f
and ACB and x€A y€A and g = restrict(f,BxB)
shows g(x,y) € A

(proof)

If a set A is closed under an operation, then it is closed under this operation
restricted to any superset of A.

lemma func_ZF_4_15:
assumes Al: A {is closed under} f

and A2: ACB
shows A {is closed under} restrict(f,BxB)
(proof)

The essential condition to show that intersection of sets that are closed with
respect to an operation is closed with respect to the operation.

lemma func_ZF_4_16:
assumes A {is closed under} f
and B {is closed under} f
and x € ANB y€ ANB
shows f(x,y) € ANB (proof)

Intersection of sets that are closed with respect to an operation is closed
under the operation.
lemma func_ZF_4_L7:

assumes A {is closed under} f

B {is closed under} f
shows ANB {is closed under} f

{proof)
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10.4 Compositions

For any set X we can consider a binary operation on the set of functions f :
X — X defined by C(f,g) = f o g. Composition of functions (or relations)
is defined in the standard Isabelle distribution as a higher order function
and denoted with the letter 0. In this section we consider the corresponding
two-argument ZF-function (binary operation), that is a subset of (X —
X)X (X = X)) x (X — X).

We define the notion of composition on the set X as the binary operation
on the function space X — X that takes two functions and creates the their
composition.

definition
Composition(X) =
{(p,fst(p) 0 snd(p)). p € (X—=X)x (X=X}

Composition operation is a function that maps (X — X) x (X — X) into
X = X.

lemma func_ZF_5_L1: shows Composition(X) : (X—X)x(X—X)—((X—X)
(proof )
The value of the composition operation is the composition of arguments.

lemma func_ZF_5_L2: assumes f:X—X and g:X—X
shows Composition(X)(f,g) = £ 0 g
(proof)

What is the value of a composition on an argument?

lemma func_ZF_5_L3: assumes f:X—X and g:X—X and x€X
shows (Composition(X)(f,g)) (x) = £(g(x))
(proof)

The essential condition to show that composition is associative.

lemma func_ZF_5_L4: assumes Al: f:X—X g:X—X h:X—=X
and A2: C = Composition(X)
shows C(C(f,g),h) = C( £,C{g,h))

(proof)

Composition is an associative operation on X — X (the space of functions
that map X into itself).

lemma func_ZF_5_L5: shows Composition(X) {is associative on} (X—X)

(proof)

10.5 Identity function

In this section we show some additional facts about the identity function
defined in the standard Isabelle’s Perm theory.
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A function that maps every point to itself is the identity on its domain.

lemma indentity_fun: assumes Al: f:X—Y and A2:VxeX. f(x)=x
shows f = id(X)
(proof)

Composing a function with identity does not change the function.

lemma func_ZF_6_L1A: assumes Al: f : X=X
shows Composition(X)(f,id(X)) = £
Composition(X)(id(X),f) = £

(proof)

An intuitively clear, but surprsingly nontrivial fact:identity is the only func-
tion from a singleton to itself.

lemma singleton_fun_id: shows ({x} — {x}) = {id({x})}
(proof )

Another trivial fact: identity is the only bijection of a singleton with itself.

lemma single_bij_id: shows bij({x},{x}) = {id({x}H)}
(proof)

A kind of induction for the identity: if a function f is the identity on a set
with a fixpoint of f removed, then it is the indentity on the whole set.

lemma id_fixpoint_rem: assumes Al: f:X—X and
A2: peX and A3: f(p) = p and
Ad: restrict(f, X-{p}) = idX-{p}H)
shows f = id(X)

(proof)

10.6 Lifting to subsets

Suppose we have a binary operation f : X x X — X written additively as
flx,y) = x +y. Such operation naturally defines another binary operation
on the subsets of X that satisfies A+ B ={x+y: 2z € A,y € B}. This new
operation which we will call ” f lifted to subsets” inherits many properties of
f, such as associativity, commutativity and existence of the neutral element.
This notion is useful for considering interval arithmetics.

The next definition describes the notion of a binary operation lifted to sub-
sets. It is written in a way that might be a bit unexpected, but really it is the
same as the intuitive definition, but shorter. In the definition we take a pair
p € Pow(X) x Pow(X), say p = (A, B), where A, B C X. Then we assign
this pair of sets the set {f(z,y) :x € A,y € B} ={f(2) : 2/ € A x B} The
set on the right hand side is the same as the image of A x B under f. In the
definition we don’t use A and B symbols, but write fst(p) and snd(p), resp.
Recall that in Isabelle/ZF fst(p) and snd(p) denote the first and second
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components of an ordered pair p. See the lemma 1ift_subsets_explained
for a more intuitive notation.

definition
Lift2Subsets (infix {lifted to subsets of} 65) where
f {lifted to subsets of} X =
{{p, £(fst(p)xsnd(p))). p € Pow(X) xPow(X)}

The lift to subsets defines a binary operation on the subsets.

lemma 1ift_subsets_binop: assumes Al: f : X X X — Y
shows (f {lifted to subsets of} X) : Pow(X) x Pow(X) — Pow(Y)

(proof)

The definition of the lift to subsets rewritten in a more intuitive notation.
We would like to write the last assertion as F(A,B) = {f(x,y). x € A, y €
B}, but Isabelle/ZF does not allow such syntax.

lemma 1lift_subsets_explained: assumes Al: f : XxX — Y
and A2: A C X B C X and A3: F = f {lifted to subsets of} X
shows
F(A,B) C Y and

F(A,B) = £f(AXB)
F(A,B) = {f(p). p € AxB}
F(A,B) = {f(x,y) . (x,y) € AxB}

(proof)

A sufficient condition for a point to belong to a result of lifting to subsets.

lemma lift_subset_suff: assumes Al: f : X x X — Y and
A2: A C X B C X and A3: x€A yeB and
Ad: F = f {lifted to subsets of} X
shows f(x,y) € F(A,B)

(proof)

A kind of converse of 1ift_subset_apply, providing a necessary condition
for a point to be in the result of lifting to subsets.

lemma 1lift_subset_nec: assumes Al: f : X X X — Y and
A2: AC X B C X and
A3: F = f {lifted to subsets of} X and
A4: z € F(A,B)
shows Jx y. x€A A y€B A z = £(x,y)
(proof)

Lifting to subsets inherits commutativity.

lemma 1lift_subset_comm: assumes Al: f : X X X — Y and
A2: f {is commutative on} X and
A3: F = f {lifted to subsets of} X
shows F {is commutative on} Pow(X)

(proof)
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Lifting to subsets inherits associativity. To show that F'((A, B)C) = F(A, F(B,C))
we prove two inclusions and the proof of the second inclusion is very similar
to the proof of the first one.

lemma lift_subset_assoc: assumes Al: f : X x X — X and
A2: f {is associative on} X and
A3: F = f {lifted to subsets of} X
shows F {is associative on} Pow(X)

(proof)

10.7 Distributive operations

In this section we deal with pairs of operations such that one is distributive
with respect to the other, that is a-(b+c¢) = a-b+a-c and (b+c)-a = b-a+c-a.
We show that this property is preserved under restriction to a set closed
with respect to both operations. In EquivClassl theory we show that this
property is preserved by projections to the quotient space if both operations
are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the
set on which the operations act. The second set is the additive operation (a
ZF function) and the third is the multiplicative operation.

definition
IsDistributive(X,A,M) = (VacX.VbeX.VceX.
M(a,A(b,c)) = A(M(a,b),M(a,c)) A
M(A(b,c),a) = A(M(b,a),M(c,a) ))

The essential condition to show that distributivity is preserved by restric-
tions to sets that are closed with respect to both operations.

lemma func_ZF_7_L1:
assumes Al: IsDistributive(X,A,M)
and A2: YCX
and A3: Y {is closed under} A Y {is closed under} M
and A4: A, = restrict(A,YXY) M, = restrict(M,YxY)
and A5: a€Y beY cey

shows M.( a,A.(b,c) ) = A.( M.(a,b),M.(a,c) ) A
M-( A.(b,c),a ) = A.( M.(b,a), M.(c,a) )
(proof )

Distributivity is preserved by restrictions to sets that are closed with respect
to both operations.

lemma func_ZF_7_L2:
assumes IsDistributive(X,A,M)
and YCX
and Y {is closed under} A
Y {is closed under} M
and A, = restrict(A,YxY) M, = restrict(M,YxY)
shows IsDistributive(Y,A,,M,)
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(proof)

end
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11 func_ZF_1.thy

theory func_ZF_1 imports Order Order_ZF_la func_ZF
begin

In this theory we consider some properties of functions related to order
relations

11.1 Functions and order
This section deals with functions between ordered sets.

If every value of a function on a set is bounded below by a constant, then
the image of the set is bounded below.

lemma func_ZF_8_L1:
assumes f:X—Y and ACX and VxeA. (L,f(x)) € r
shows IsBoundedBelow(f(A),r)

(proof)

If every value of a function on a set is bounded above by a constant, then
the image of the set is bounded above.

lemma func_ZF_8_L2:
assumes f:X—Y and ACX and VxeA. (f(x),U) € r
shows IsBoundedAbove(f(A),r)

(proof)

Identity is an order isomorphism.

lemma id_ord_iso: shows id(X) € ord_iso(X,r,X,r)

{proof)

Identity is the only order automorphism of a singleton.

lemma id_ord_auto_singleton:
shows ord_iso({x},r,{x},r) = {id({x}?}
{proof)

The image of a maximum by an order isomorphism is a maximum. Note
that from the fact the r is antisymmetric and f is an order isomorphism
between (A, r) and (B, R) we can not conclude that R is antisymmetric (we
can only show that RN (B x B) is).

lemma max_image_ord_iso:
assumes Al: antisym(r) and A2: antisym(R) and
A3: f € ord_iso(A,r,B,R) and
A4: HasAmaximum(r,A)
shows HasAmaximum(R,B) and Maximum(R,B) = f(Maximum(r,A))

{(proof)
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Maximum is a fixpoint of order automorphism.

lemma max_auto_fixpoint:
assumes antisym(r) and f € ord_iso(A,r,A,r)
and HasAmaximum(r,A)
shows Maximum(r,A) = f(Maximum(r,A))

(proof)

If two sets are order isomorphic and we remove = and f(z), respectively,
from the sets, then they are still order isomorphic.

lemma ord_iso_rem_point:
assumes Al: f € ord_iso(A,r,B,R) and A2: a € A
shows restrict(f,A-{a}) € ord_iso(A-{a},r,B-{f(a)},R)
(proof )

If two sets are order isomorphic and we remove maxima from the sets, then
they are still order isomorphic.

corollary ord_iso_rem_max:
assumes Al: antisym(r) and f € ord_iso(A,r,B,R) and
A4: HasAmaximum(r,A) and A5: M = Maximum(r,A)
shows restrict(f,A-{M}) € ord_iso(A-{M}, r, B-{f(M)},R)
(proof )

Lemma about extending order isomorphisms by adding one point to the
domain.

lemma ord_iso_extend: assumes Al: f € ord_iso(A,r,B,R) and
A2: My ¢ A Mg ¢ B and
A3: VaeA. (a, My) € r VDbeB. (b, Mp) € R and
A4: antisym(r) antisym(R) and
AB: (Mg,My) € T +— (Mp,Mp) € R
shows f U {( M4,Mp)} € ord_iso(AU{M4} ,r,BU{Mgp} ,R)
(proof)

A kind of converse to ord_iso_rem_max: if two linearly ordered sets sets are
order isomorphic after removing the maxima, then they are order isomor-
phic.
lemma rem_max_ord_iso:

assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and

A2: HasAmaximum(r,X) HasAmaximum(R,Y)

ord_iso(X - {Maximum(r,X)},r,Y - {Maximum(R,Y)},R) # O

shows ord_iso(X,r,Y,R) # 0
{proof )

11.2 Projections in cartesian products

In this section we consider maps arising naturally in cartesian products.
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There is a natural bijection etween X =Y x {y} (a "slice”) and Y. We will
call this the SliceProjection(Yx{y}). This is really the ZF equivalent of
the meta-function fst(x).

definition
SliceProjection(X) = {(p,fst(p)). p € X }

A slice projection is a bijection between X x {y} and X.

lemma slice_proj_bij: shows
SliceProjection(Xx{y}): Xx{y} — X
domain(SliceProjection(Xx{y})) = Xx{y}
VpeXx{y}. SliceProjection(Xx{y})(p) = fst(p)
SliceProjection(Xx{y}) € bij(Xx{y},X)

(proof)

11.3 Induced relations and order isomorphisms

When we have two sets X,Y, function f : X — Y and a relation R on
Y we can define a relation r on X by saying that x r y if and only if
f(z) R f(y). This is especially interesting when f is a bijection as all
reasonable properties of R are inherited by r. This section treats mostly
the case when R is an order relation and f is a bijection. The standard
Isabelle’s Order theory defines the notion of a space of order isomorphisms
between two sets relative to a relation. We expand that material proving
that order isomrphisms preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping f: X — Y
the InducedRelation(f,R).

definition
InducedRelation(f,R) =
{p € domain(f)xdomain(f). (f(fst(p)),f(snd(p))) € R}

A reformulation of the definition of the relation induced by a function.

lemma def_of_ind_relA:
assumes (x,y) € InducedRelation(f,R)
shows (f(x),f(y)) € R
(proof)

A reformulation of the definition of the relation induced by a function, kind
of converse of def_of_ind_relA.

lemma def_of_ind_relB: assumes f:A—B and
x€A yeA and (f(x),f(y)) € R
shows (x,y) € InducedRelation(f,R)
(proof)

A property of order isomorphisms that is missing from standard Isabelle’s
Order.thy.
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lemma ord_iso_apply_conv:
assumes f € ord_iso(A,r,B,R) and
(f(x),£(y)) € R and x€A yeA
shows (x,y) € r

(proof)

The next lemma tells us where the induced relation is defined

lemma ind_rel_domain:
assumes R C BxB and f:A—B
shows InducedRelation(f,R) C AXA

{proof)

A bijection is an order homomorphisms between a relation and the induced
one.

lemma bij_is_ord_iso: assumes Al: f € bij(A,B)
shows f € ord_iso(A,InducedRelation(f,R),B,R)
(proof)

An order isomoprhism preserves antisymmetry.

lemma ord_iso_pres_antsym: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA and A3: antisym(R)
shows antisym(r)

(proof)

Order isomoprhisms preserve transitivity.

lemma ord_iso_pres_trans: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxXA and A3: trans(R)
shows trans(r)

(proof)

Order isomorphisms preserve totality.

lemma ord_iso_pres_tot: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA and A3: R {is total on} B
shows r {is total on} A

(proof)

Order isomorphisms preserve linearity.

lemma ord_iso_pres_lin: assumes f € ord_iso(A,r,B,R) and
r C AxA and IsLinOrder(B,R)
shows IsLinOrder(A,r)

(proof)

If a relation is a linear order, then the relation induced on another set by a
bijection is also a linear order.

lemma ind_rel_pres_lin:
assumes Al: f € bij(A,B) and A2: IsLinOrder(B,R)
shows IsLinOrder(A,InducedRelation(f,R))
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(proof)

The image by an order isomorphism of a bounded above and nonempty set
is bounded above.

lemma ord_iso_pres_bound_above:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AxA and
A3: IsBoundedAbove(C,r)  C#0
shows IsBoundedAbove(f(C),R) £(C) # O

(proof)

Order isomorphisms preserve the property of having a minimum.

lemma ord_iso_pres_has_min:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AxA and
A3: CCA and A4: HasAminimum(R,f(C))
shows HasAminimum(r,C)

(proof)

Order isomorhisms preserve the images of relations. In other words taking
the image of a point by a relation commutes with the function.

lemma ord_iso_pres_rel_image:
assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AXA R C BxB and
A3: achA
shows f(r{a}) = R{f(a)}
(proof)

Order isomorphisms preserve collections of upper bounds.

lemma ord_iso_pres_up_bounds:
assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AXA R C BxB and
A3: CCA
shows {f(r{a}). aeC} = {R{b}. b € £(C)}
(proof)

The image of the set of upper bounds is the set of upper bounds of the
image.
lemma ord_iso_pres_min_up_bounds:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AXxA R C BxB and
A3: CCA and A4: C#O
shows f(((acC. r{a}) = ([\bef(C). R{b})
(proof)

Order isomorphisms preserve completeness.

lemma ord_iso_pres_compl:
assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AXA R C BxB and A3: R {is complete}
shows r {is complete}
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(proof)
If the original relation is complete, then the induced one is complete.

lemma ind_rel_pres_compl: assumes Al: f € bij(A,B)
and A2: R C BxB and A3: R {is complete}
shows InducedRelation(f,R) {is complete}

(proof)

end
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12 Generalization _ZF.thy

theory Generalization_ZF imports funcl
begin

This theory formalizes the intuitive notion of generalization.
See http://www.mathematics21.org/generalization.html for more details.
Contributed by Victor Porton.

12.1 Generalization situation

In mathematics it is often encountered that a small set S naturally bijectively
corresponds to a subset R of a larger set B. (In other words, there is specified
an injection F from S to B.) It is a widespread practice to equate S with R.
But strictly speaking this equating may contradict to the axioms of ZF /ZFC
because we are not insured against S N B # () incidents. To work around
of this (and formulate things exactly what could benefit computer proof
assistants) we will replace the set B with a new set B having a bijection
M : B — B such that M o E = idg. (I call this bijection M from the first
letter of the word "move” which signifies the move from the old set B to a
new set B. This section contains some basic lemmas holding in this setup.

The next locale defines our assumptions.

locale generalization =
fixes small and big
fixes embed
assumes embed_inj: embed € inj(small, big)

We define the small2 set as the range of embed.

definition (in generalization) small2 = range (embed)

We define spec as the converse of embed.

definition (in generalization) spec = converse(embed)

Spec is an injection from range of embed to small.

lemma (in generalization) spec_inj: shows spec € inj(small2, small)

(proof)

Spec maps range of embed to small.

lemma (in generalization) spec_fun: shows spec: small2—small

(proof)

Embed maps smallsmall to big.

lemma (in generalization) embed_fun: shows embed: small—big

(proof)
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FEmbed is a surjection from small to small2.

lemma (in generalization) embed_surj: shows embed € surj(small, small2)

(proof)

Embed is a bijection between small and small2.

theorem (in generalization) embed_bij: shows embed € bij(small, small2)
(proof )

small2 (i.e. range of embed) is a subset of big.

theorem (in generalization) small2_sub_big: shows small2 C big

(proof)

spec is a bijection beween small2 and small.

theorem (in generalization) spec_bij: shows spec € bij(small2, small)

(proof)

12.2 Arbitrary generalizations
This section considers a more general situation.
The next locale extends generalization adding another big set and the move

operation.

locale generalizationl = generalization +
fixes newbig
fixes move
assumes move_bij: move € bij(big, newbig)
assumes mo