
HIGH PRECISION ARITHMETIC LIBRARY

PROGRAMMER’S MANUAL

Copyright (C) 2005 Ivano Primi ¡ivprimi (a) libero.it¿

Last Update: 2005-08-03

1

Contents

1 Summary 3

2 License 3

3 General Technical Comments 4

4 General overview 5

5 Dealing with runtime errors 8

6 Compiling and linking 10

7 Real arithmetic 14

7.1 Real constants . 15

7.2 Extended Precision Floating Point Arithmetic 16

7.3 Extended Precision Math Library 31

7.4 Applications of Extended Precision Arithmetic 36

8 Complex Arithmetic 37

8.1 Complex constants . 37

8.2 Extended Precision Complex Arithmetic 37

8.3 Extended Precision Complex Math Library 56

9 The C++ interface 61

10 Compiling and linking with the C++ wrapper 63

11 The xreal class 64

12 The xcomplex class 72

13 Acknowledgments 84

2

14 GNU Free Documentation License 84

3

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sec-
tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled ”GNU Free Documentation License”.

1 Summary

The High Precision Arithmetic (HPA) library implements a high precision
floating point arithmetic together with a comprehensive set of support func-
tions. The general areas covered by these functions include:

• Extended Precision Arithmetic

• Extended Precision Math Library

• Applications of High Precision Computation

The math library support includes evaluation of trigonometric, inverse trigono-
metric, hyperbolic, logarithm, and exponential functions at the same preci-
sion as the floating point math itself. The HPA library also supports high
precision complex arithmetic and includes an Extended Precision Complex
Math Library.

2 License

The HPA library comes from a branch of the source code of the CCMath
library, which is a work by Daniel A. Atkinson. Daniel A. Atkinson was very
kind to release the code of the CCMath Library under GNU Lesser General
Public License. This made possible that Ivano Primi could modify, complete
and redistribute this source code under the same terms.

So, the HPA (abbreviation of High Precision Arithmetic) Library is copy-
righted by Ivano Primi ¡ivprimi (a) libero it¿ and Daniel A. Atkinson (the
author of the original code). As it is for the source code of the CCMath
Library, the source code of the HPA library is released under the terms of
the GNU Lesser General Public License, as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later
version.

The HPA library is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-

4

CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.

You can contact me by paper mail writing to the next address

Ivano Primi via Colle Cannetacce 50/A C.A.P. 00038 - Val-
montone (ROMA) Italy .

If you prefer the electronic mail you can write to the address

¡ivprimi (a) libero it¿ .

3 General Technical Comments

The functions forming the HPA library are all implemented in a portable
fashion in the C language. The IEEE 754 standard for floating point hard-
ware and software is assumed in the PC/Unix version of this library. The
normal configuration of the library employs a floating point mantissa of
112 bits, or approximately 32 decimal digit precision. However, even higher
precision is available as an option. An extended floating point number is
represented as a combination of the following elements:

sign bit(s): 0 -> positive, 1 -> negative ;

exponent(e): 15-bit biased integer (bias=16383) ;

mantissa(m): 7 words of 16 bit length with the leading 1 explicitly repre-
sented .

Thus f = (-1)ˆs*2ˆ[e-16383] *m , with 1 <= m < 2 . This format supports
a dynamic range of:

2ˆ16384 > f > 2ˆ[-16383] or

1.19*10ˆ4932 > f > 1.68*10ˆ-[4932].

Special values of the exponent are:

all ones -> infinity (floating point overflow)

all zeros -> number = zero.

5

Underflow in operations is handled by a flush to zero. Thus, a number with
the exponent zero and nonzero mantissa is invalid (not-a-number). From
the point view of the HPA library, a complex number is simply a structure
formed by two extended floating point numbers, representing respectively
the real and the imaginary part of the complex number.

4 General overview

The HPA library is composed by two modules. The first one is formed by the
functions for the real arithmetic, that is to say by the functions operating
on real arguments. The second one is formed by all the functions which
manipulate complex arguments. The lists of the functions which compose
the HPA library are in the header files xpre.h and cxpre.h. xpre.h is the
header file for real arithmetic, it contains a definition of the basic structure
of an extended precision real number (struct xpr), and all the declarations
of the functions provided by the library to manipulate real arguments. The
numeric type struct xpr can be used to declare and define real variables,
just as in

struct xpr q;

The size of a variable of struct xpr type is given by (2 x XDIM + 2) bytes,
where XDIM is a constant defined in the file xpre.h (actually, in the file
hpaconf.h which is included by xpre.h).

cxpre.h is the header file for complex arithmetic, it contains a definition
of the basic structure of an extended precision complex number (struct
cxpr), and all the declarations of the functions provided by the library to
manipulate complex arguments. The numeric type struct cxpr can be used
to declare and define complex variables, just as in

struct cxpr q;

The size of a variable of struct cxpr type is given by (4 x XDIM + 4) bytes,
where XDIM is the same constant as above. Naturally, before declaring
or defining variables of struct xpr type and before using anyone of the
functions declared in the header file xpre.h, you have to put the line

#include <xpre.h>

6

in your source code file. Analogously, before declaring or defining variables
of struct cxpr type and before using anyone of the functions declared in
the header file cxpre.h, you have to add the line

#include <cxpre.h>

to your source code file.

After including in your source code the header file xpre.h or, if you also
need functions handling complex arguments, the header file cxpre.h (which
automatically includes xpre.h), you can start to play with the HPA library,
by defining all the variables and recalling all the functions which are needed
to do your computations. In fact, the HPA library DOES NOT REQUIRE
that a special initialization routine must be called before any other function
of the library. Moreover, variables of struct xpr or struct cxpr type DO
NOT NEED to be initialized before they can be used. So, with respect
to these issues, the HPA library is different from some other libraries for
arbitrary precision computation, like GNU MP(c) or MAPM(c). Actually,
the HPA library is not for arbitrary precision arithmetic, but only for high
precision arithmetic, if you know the difference.

When I wrote the HPA library, I tried to create a sort of namespace for all
the identifiers used by the library. This has been achieved by sticking to the
following rules:

1. The identifiers of functions and types are lowercase with the unique
exception of the function xisNaN(). Their names start by x (if they are
defined in xpre.h) or by cx (if they are defined in cxpre.h) with the
only exception of a few functions, which however have a name ending
by tox or tocx:

strtox(), strtocx(), atox(), atocx(),

dbltox(), dctocx(), flttox(), fctocx(),

inttox(), ictocx(), uinttox(), uctocx();

2. The names of the macros defined by the HPA library are all uppercase
and start by X or CX;

3. The names of the global constants defined by the HPA library start by
x (real constants) or by cx (complex constants) and the letter which
immediately follows this prefix is always uppercase, just as in xZero,
xPi, cxOne, cxIU (IU stays for imaginary unit);

7

4. The unique global variable defined by the HPA library is an error
indicator of int type, whose name is xErrNo.

A trivial program sampling the use of the HPA library, is given by:

#include <stdio.h>

#include <xpre.h>

int main (void)

{

struct xpr s;

int i, n;

do

{

printf ("Give me a number, n = ? \t");

scanf ("%d", &n);

s = xZero;

for (i = 0; i <= n; i++)

s = xadd (s, xpr2(xOne, i), 0);

printf ("The sum 2^0 + 2^1 + ... + 2^n is equal to\n");

xprxpr (s, 30);

putchar (’\n’);

} while (n > 0);

return 0;

}

This program takes in input from the user an integer value n and prints on
the screen the sum of the first n powers of 2. In the program we use the
functions xpr2() and xprxpr(). xpr2(x, n), where n is an integer, returns
x* 2^n, while xprxpr(x, m), where m is an integer, prints on the screen the
number x with m decimal digits after the dot (.) .

A last note: the HPA library is NOT thread safe. Some of the HPA internal
data could get corrupted if multiple HPA functions are active at the same
time. This is due to the fact that some functions of the HPA library use
static variables to store information. So, the user should guarantee that only
one thread is performing HPA functions. This can usually be achieved by a
call to the operating system to obtain a semaphore, mutex, or critical code
section so the operating system will guarantee that only one HPA thread
will be active at a time.

8

5 Dealing with runtime errors

During the use of the HPA library it could happen to pass a function an
illegal argument, that is to say an argument whose value is against the
mathematical definition of the function. For instance, this occurs when a
negative value is passed to the function xsqrt(). This function computes
and returns the square root of its argument, but the square root of a number
is defined only for non-negative numbers. So, if x is less than zero, then
xsqrt(x) can not be computed and a mathematical error occurs (a so called
domain error). Another type of mathematical error occurs when the second
argument of the division function (xdiv()) is zero: because it is impossible
to divide a number by zero, a division by zero error occurs. What does
it happen when a mathematical error is detected during the execution of a
function of the HPA library ? Well, it depends upon the way the HPA library
was compiled when it was installed on the system where you are working. If,
during the installation process, the default setting was left unchanged, then
whenever a runtime error occurs within a function of the HPA library, this
function will set an external error indicator to a suitable value. This value
can be looked up later to know what exactly went wrong. The name of the
variable of int type used as error indicator is xErrNo. Before any function of
the HPA library is executed, the value of xErrNo is 0. Then, when the first
HPA function is called, if a mathematical error occurs, then xErrNo is set
to a suitable positive value, which indicates the exact type of the occurred
error. After, xErrNo is modified if and only if, during the execution of an
HPA function, another mathematical error occurs. xErrNo is never reset to
0 by the HPA library, so one has to zero xErrNo before calling a function of
the HPA library in order to detect possible errors. A sample of it is given
by:

#include <stdio.h>

#include <xpre.h>

extern int xErrNo;

int main (void)

{

int n;

struct xpr sr;

do

{

printf ("Give me a number, n = ? \t");

9

scanf ("%d", &n);

xErrNo = 0;

sr = xsqrt (inttox (n));

if (xErrNo == 0)

{

printf ("The square root of %d is\n", n);

xprxpr (sr, 30);

putchar (’\n’);

}

else

fprintf (stderr, "*** Error: Out of domain\n");

} while (n != 0);

return 0;

}

In this sample xErrNo is reset to zero at each execution of the do {...}
while(); loop before the call to the xsqrt() function.

However, the HPA library could be compiled to deal differently with runtime
errors. For instance, in case of error a suitable message could be printed
onto stderr and the library could also cause the termination of the calling
program via EXIT(1). At last, the library could also be compiled to ignore
at all any mathematical error (sigh !). To know how the routines of the HPA
library deal with errors is sufficient to examine the file hpaconf.h (which is
automatically included by xpre.h and cxpre.h). This file defines the macro:

• XERR DFL to mean that, in case of error, xErrNo is suitably set;

• XERR WARN to mean that, in case of error, a suitable message is
printed on stderr;

• XERR EXIT to mean that, in case of error, the calling program is
terminated through a call to exit(1) after printing a message on stderr;

• XERR IGN to mean that, in case of error, nothing is done or signaled.

When the macro XERR DFL is defined, the header file xpre.h also defines
the macros XENONE, XEDIV, XEDOM, XEBADEXP, XFPOFLOW and
XNERR:

#define XENONE 0 /* No error */

#define XEDIV 1 /* Division by zero */

#define XEDOM 2 /* Out of domain */

10

#define XEBADEXP 3 /* Bad exponent */

#define XFPOFLOW 4 /* Floating point overflow */

#define XNERR 4 /* Number of the non-null error codes */

that can be used, together with xErrNo, to recover the exact type of the
error occurred during a call to a routine of the HPA library.

6 Compiling and linking

Now I will only concentrate on how compiling and building a program which
makes use of the HPA library. Together with the HPA library is installed a
little and simple program called hpaconf. You can use it to quickly compile
and build your programs. If PREFIX is the root directory chosen to install
the HPA library (the default value for PREFIX is /usr/local), then hpaconf

should be installed inside PREFIX/bin. You can know where hpaconf is
installed by launching the command

which hpaconf

on your console or terminal. In the following I will suppose that the directory
PREFIX/bin is included in your PATH environment variable (This is surely
true if the command which was able to find hpaconf).

hpaconf recognizes four options:

-v

to return the version of HPA installed on your system

-c

to return the flags needed to compile using HPA

-l

to return the flags to link against HPA

-n

11

to print a newline at the end of the output.

The option -v cannot be used together with the options -c and -l, but it
may be used together with -n:

hpaconf -v

prints onto the standard output (console) the version of HPA
installed on your system

hpaconf -v -n or hpaconf -n -v

(order does not matter) behaves exactly the same but also
prints a newline to force the following output to be written on
the next line.

The options -c and -l cannot be used together with -v, but they can be
used both at the same time and they can be accompanied by the option -n.
Of course, order does not matter.

hpaconf -c

prints onto the standard output the flags needed to compile
using HPA

hpaconf -l

prints onto the standard output the flags needed to link
against HPA

hpaconf -c -l or hpaconf -l -c

prints both the flags to compile using HPA and the flags to
link against HPA.

If the -n option is added, then the information printed is followed by a new-
line. Why hpaconf is so useful ? I will give you an example. To compile
the source file example.c you should tell the compiler where looking for
the header files of HPA and for the library itself; to do this it is sufficient
to specify the related paths with the options -I and -L (at least if you are
using GCC/G++ as C/C++ compiler). However, in this way you are con-
strained to remember the path where HPA was installed and this is quite
uncomfortable. With hpaconf you can simply use the command

12

cc -c $(hpaconf -c) example.c

or

cc -c ‘hpaconf -c‘ example.c

to compile the file example.c and obtain the object file example.o. Actually,
the previous one is the right form of the command for a shell sh compatible,
like ash, bash or ksh. If you are using another shell, probably the right form
to obtain the expansion of the command hpaconf -c will be another one
(see the manual of your preferred shell for this). On GNU/Linux bash is the
default shell for all users. If this is not true for your machine, then ask your
system administrator :) Once you have obtained the object file example.o,
you may do the linkage by using the command (for a shell sh-compatible):

cc example.o $(hpaconf -l) -o example

or

cc example.o ‘hpaconf -l‘ -o example

If you want, you may also compile and build at the same time by using (Do
i need to repeat the next one is the right form only for a shell sh-compatible
?)

cc example.c $(hpaconf -c -l) -o example

or

cc example.c ‘hpaconf -c -l‘ -o example

which will compile example.c and build the program example. Naturally,
compiling and building at the same time is only possible when the source
code of your program is all contained in one file.

The hpaconf program may also be used to retrieve information about the
options used to compile the HPA library for the system where you are work-
ing. This information is displayed, together with hints about usage, when
hpaconf is called with no options. This is the output obtained on my per-
sonal machine:

13

ivano@darkstar[~]$ hpaconf

*** Usage: hpaconf [-v] [-n] or

*** hpaconf [-c] [-l] [-n]

*** Meaning of the options:

-v return the current version of the HPA library

-c return flags to compile using HPA library

-l return flags to link against HPA library

-n insert a newline at the end

----- Features of the HPA library (including build options) -----

Size of an extended precision floating point value (in bytes): 16

Number of bits available for the sign: 1

Number of bits available for the exponent: 15

Number of bits available for the mantissa: 112

Decimal digits of accuracy: ~33

Dynamic range supported: 2^16384 > x > 2^(-16383) i.e.

1.19*10^4932 > x > 1.68*10^-(4932)

In case of floating point error

the global (extern) variable ’xErrNo’ is suitably set

The first value shown after the header Features of the HPA library is
the size of a variable of struct xpr type. When I installed the HPA library
on my machine, i chose to compile it by setting XDIM to 7. So, a variable
of type struct xpr turns out to have a size of 16 = 2 * 7 + 2 bytes. Since
XDIM could have been set to another value on the system where you are
working (actually, XDIM could also have the values 11, 15, 19, 23, 27 and
31), the first value shown by hpaconf could differ on your machine. The
next 2 values (bits available for sign and exponent) are the same for all the
installations. The decimal digits of accuracy depend on the value of XDIM,
namely they increase together with XDIM (till to a maximum of 149 when
XDIM is 31). As you can see, the actual value of XDIM determines the
accuracy provided by the mathematical functions of the HPA library. Even
if a larger value for XDIM implies a greater accuracy, together with XDIM
increases the memory (and the time !) requested by the routines of the HPA
library to perform their computations. The dynamic range supported by the
HPA library is always the same (or almost). At end, the HPA library can be
compiled to deal differently with the error conditions (see previous section).
In the last line of the output of hpaconf, you can find information about
treatment of the errors. This information can also be retrieved by looking
up the file hpaconf.h, as explained in the previous section.

14

This last way will turn out you very useful while writing your programs. The
file hpaconf.h also defines the macro HPA VERSION as a string containing
the version number of the HPA library currently in use.

7 Real arithmetic

The first module of the HPA library is made of functions for Extended
Precision Floating Point Arithmetic, functions of the Extended Precision
Math Library and applications of the Extended Precision Arithmetic. They
are all declared in the file xpre.h together with some macros and numerical
constants.

The header file xpre.h also defines the structure xoutflags:

struct xoutflags

{

short fmt, notat, sf, mfwd, lim;

signed char padding, ldel, rdel;

};

A structure of such kind is used by the output functions xfout(), xout()
and xsout() to know how they have to print the numbers.

The field notat refers to the notation: it can be equal to XOUT SCIENTIFIC
(scientific notation) or to XOUT FIXED (floating point notation). Both
XOUT SCIENTIFIC and XOUT FIXED are macros defined inside xpre.h.

The field sf refers to the sign: when sf is not zero every non-negative number
is printed with a plus sign (+) ahead.

The field mfwd indicates the minimum field width to use in printing num-
bers. When mfwd is zero no minimum field width is used. When mfwd is
negative, then the actual minimum field width is given by -mfwd and the
printed number is left adjusted on the field boundary. (The default is right
justification).

lim has a different meaning depending on the actual notation in use. To-
gether with the scientific notation, lim gives the number of decimal digits to
the right of the decimal point (lim+1 = total digits displayed). Otherwise,
lim + 1 is the number of significant digits displayed. When lim is negative,
the default value (6) is used.

At last, padding defines the padding character to use together with a non-
zero minimum field width. If padding is negative, then the default padding

15

char (i.e. the blank character) is used.

The fields fmt, ldel and rdel are ignored by the functions xfout(), xout()
and xsout(). They are only used by the functions cxfout(), cxout() and
cxsout() in order to format and print complex numbers.

fmt specifies the format to use in printing complex numbers. The possi-
ble values for fmt are XFMT STD, XFMT RAW and XFMT ALT (these
macros are declared inside cxpre.h !). If fmt == XFMT STD, then the com-
plex number (a, b) is printed using the notation a+bi or a-bi (depending
on the sign of b). Naturally, a and b are printed under the rules above
exposed. If fmt == XFMT RAW, then (a, b) is printed in the form

a<two blank spaces>b

just as in

1.0 2.5

under the hypothesis that a = 1.0 and b = 2.5.

At last, if fmt == XFMT ALT, then (a,b) is printed as

<left delimiter>a, b<right delimiter>

where <left delimiter> and <right delimiter> are the characters given by
the fields ldel and rdel respectively. If ldel < 0 (rdel < 0), then ((or
)) is used as default <left delimiter> (<right delimiter>).

Be careful ! None of the functions xfout(), xout(), xsout(), cxfout(),
cxout() or cxsout() adds a newline at the end of the printed number !

7.1 Real constants

The header file xpre.h defines several constants. Between the constants
defined in xpre.h there are those ones corresponding to particular mathe-
matical values:

extern const struct xpr xZero, xOne, xTwo, xTen;

extern const struct xpr xPinf, xMinf, xNaN;

extern const struct xpr xPi, xPi2, xPi4, xEe, xSqrt2;

extern const struct xpr xLn2, xLn10, xLog2_e, xLog2_10,

xLog10_e;

16

xZero (= 0), xOne (= 1), xTwo (= 2)and xTen (= 10) do not need a
comment. xPi, xPi2, xPi4, xEe, xSqrt2, xLn2, xLn10, xLog2 e, xLog2 10,
xLog10 e represent respectively the values PI (= 3.14159...), PI/2, PI/4, e
(= 2.7182818...), square root of 2 (= 1.4142135...), natural logarithm of 2
and 10, base-2 logarithm of e and 10, 10-base logarithm of e.

xPinf, xMinf and xNan are special values: xPinf represents the value +oo

(plus infty), xMinf the value -oo (minus infty) and xNaN is used to mean
an invalid number (NaN stays for Not a Number). xPinf and xMinf are usu-
ally returned by a function to signal a floating point overflow (positive and
negative respectively), while xNaN is returned by the functions converting
ASCII strings to floating point numbers to indicate that the string given
to them as argument did not contain any valid number. xPinf, xMinf and
xNaN should never be used as arguments for functions, since a such use has
unpredictable results.

7.2 Extended Precision Floating Point Arithmetic

The arithmetic functions support the basic computation and input/output
operations needed for extended precision floating point mathematics. Some
of the operations supply capabilities designed to enhance the computational
efficiency of this arithmetic (e.g., xpwr). What follows is their complete list
including the synopsis for each of them.

xadd

Add (subtract) two extended precision numbers.

struct xpr xadd(struct xpr s,struct xpr t,int f)

s = structure containing first number;

t = structure containing second number;

f = control flag: if 0, then s and t are added, else they are subtracted (s-t).

The value returned by xadd() is a structure containing the result of the
addition (subtraction). xadd() can return xPinf or xMinf to signal a floating
point overflow.

xmul

Multiply two extended precision numbers.

struct xpr xmul(struct xpr s,struct xpr t)

17

s = structure containing first number;

t = structure containing second number.

The value returned by xmul() is a structure containing the product s*t. It
can be xPinf or xMinf in case of overflow.

xdiv

Divide one extended precision number by a second.

struct xpr xdiv(struct xpr s,struct xpr t)

s = structure containing numerator;

t = structure containing denominator.

The value returned by xdiv() is a structure containing the quotient s/t.

xneg

Change sign (unary minus).

struct xpr xneg(struct xpr s)

s = structure containing input number.

The value returned by xneg() is a structure containing its argument with
the changed sign.

xabs

Compute absolute value.

struct xpr xabs(struct xpr s)

s = structure containing input number.

The value returned by xabs() is a structure containing the absolute value
of its argument.

x exp

Extract the binary exponent.

int x_exp(const struct xpr *p)

18

p = pointer to an extended precision number.

The value returned by x exp() is the binary exponent (power of 2) of the
number pointed to by p.

x neg

Test the sign of an extended precision number.

int x_neg(const struct xpr *p)

p = pointer to an extended precision number.

The value returned by x neg() is a sign flag, with 0 meaning positive input,
1 negative input (the input is, of course, the number pointed to by p).

Note that neither x exp() nor x neg() alter the input number !

xpwr

Raise to integer powers.

struct xpr xpwr(struct xpr s,int n)

s = structure containing input number;

n = power desired.

The return value is a structure containing the nth power of the first argu-
ment.

xpr2

Multiplication by a power of 2.

struct xpr xpr2(struct xpr s,int m)

s = structure containing input number;

m = power of two desired.

The return value is a structure containing the product of the first argument
by the mth power of two. xpr2() returns xZero in case of underflow, xPinf
or xMinf in case of overflow.

xpow

Power function.

19

struct xpr xpow (struct xpr x, struct xpr y)

x = base;

y = exponent.

The return value is a structure containing the power of the first argument
raised to the second one. Note that the first argument must be positive, i.e.
greater than zero.

xprcmp

Compare two extended precision numbers.

int xprcmp (const struct xpr *p, const struct xpr *q)

p = pointer to first number;

q = pointer to second number.

The value returned by xprcmp() is a comparison flag, with 1 meaning *p

greater than *q, 0 meaning *p equal to *q and -1 meaning *p less than *q.

Note that the input numbers are not altered by xprcmp() !

xeq

Check if two numbers are or are not equal.

int xeq (struct xpr x1, struct xpr x2)

x1 = first number;

x2 = second number.

The return value is 0 if x1 and x2 are different, else a non-null value.

xneq

Check if two numbers are or are not equal.

int xneq (struct xpr x1, struct xpr x2)

x1 = first number;

x2 = second number.

20

The return value is 0 if x1 and x2 are equal, else a non-null value.

xgt

Check if a number is greater than another one.

int xgt (struct xpr x1, struct xpr x2)

x1 = first number;

x2 = second number.

The return value is 0 if x1 is less or equal to x2, else a non-null value.

xge

Check if a number is greater or equal to another one.

int xge (struct xpr x1, struct xpr x2)

x1 = first number;

x2 = second number.

The return value is 0 if x1 is less than x2, else a non-null value.

xlt

Check if a number is less than another one.

int xlt (struct xpr x1, struct xpr x2)

x1 = first number;

x2 = second number.

The return value is 0 if x1 is greater or equal to x2, else a non-null value.

xle

Check if a number is less or equal to another one.

int xle (struct xpr x1, struct xpr x2)

x1 = first number;

x2 = second number.

21

The return value is 0 if x1 is greater than x2, else a non-null value.

xisNaN

Check if a number is valid or not.

int xisNaN (const struct xpr *u)

u = pointer to a structure containing a number.

The return value is 0 if *u is a valid number, else a non-null value.

Remark:

A number is considered invalid (not-a-number) when its exponent is zero
but its mantissa isn’t it.

xisPinf

Check if a number is equal to +oo.

int xisPinf (const struct xpr *u)

u = pointer to a structure containing a number.

The return value is 1 if *u is equal to xPinf (+oo), 0 otherwise.

xisMinf

Check if a number is equal to -oo.

int xisMinf (const struct xpr *u)

u = pointer to a structure containing a number.

The return value is 1 if *u is equal to xMinf (-oo), 0 otherwise.

xisordnumb

Check if a given number is an ordinary number.

int xisordnumb (const struct xpr *u)

u = pointer to a structure containing a number.

The return value is 1 if *u is a valid number and is neither xPinf (+oo) nor
xMinf (-oo), else 0.

22

xis0

Compare a number with zero.

int xis0 (const struct xpr *u)

u = pointer to a structure containing a number.

The return value is 0 if *u is not zero, else a non-zero value.

xnot0

Compare a number with zero.

int xnot0 (const struct xpr *u)

u = pointer to a structure containing a number.

The return value is 0 if *u is zero, else a non-zero value.

xsgn

Obtain the sign of a number.

int xsgn (const struct xpr *u)

u = pointer to a structure containing a number.

The return value is 0 when *u is zero or is an invalid number (not-a-number),
1 if *u is positive, -1 if *u is negative.

Remark:

xPinf is considered a positive value, xMinf a negative value.

xtodbl

Cast extended precision numbers to double precision ones.

double xtodbl(struct xpr s)

s = structure containing extended precision input.

The return value is the double precision float corresponding to s.

dbltox

Convert double precision numbers to extended precision ones.

23

struct xpr dbltox(double y)

y = double precision floating point input.

The return value is a structure containing extended equivalent of y.

xtoflt

float xtoflt(struct xpr s)

s = structure containing extended precision input.

The return value is the single precision float corresponding to s.

flttox

Convert single precision numbers to extended precision ones.

struct xpr flttox(float y)

y = single precision floating point input.

The return value is a structure containing extended equivalent of y.

inttox

Convert signed integers to extended precision numbers.

struct xpr inttox(long n)

n = integer input.

The return value is a structure containing extended equivalent of n.

uinttox

Convert unsigned integers to extended precision numbers.

struct xpr uinttox(unsigned long n)

n = integer input.

The return value is a structure containing extended equivalent of n.

strtox

Convert a floating point number, expressed as a decimal ASCII string in a
form consistent with C, into the extended precision format.

24

struct xpr strtox (const char* s, char** endptr)

s = pointer to null terminated ASCII string expressing a decimal number;

endptr = NULL or address of a pointer to char defined outside strtox().

The value returned by strtox() is a structure containing the input number
in the extended precision format.

Remarks:

The strtox() function converts the initial portion of the string pointed to
by s to its extended precision representation.

The expected form of the (initial portion of the) string is optional leading
white space as recognized by the standard library function isspace(), an
optional plus (+) or minus sign (-) and then a decimal number. A decimal
number consists of a nonempty sequence of decimal digits possibly con-
taining a radix character (decimal point, i.e. ’.’), optionally followed by a
decimal exponent. A decimal exponent consists of an E or e, followed by an
optional plus or minus sign, followed by a non-empty sequence of decimal
digits, and indicates multiplication by a power of 10.

This function returns the converted value, if any. If the correct value would
cause overflow, then xPinf or xMinf is returned, according to the sign of the
value. If the correct value would cause underflow, xZero is returned. If no
conversion is performed, xNaN is returned.

If endptr is not NULL, a pointer to the character after the last character
used in the conversion is stored in the location referenced by endptr. If no
conversion is performed, the value of s is stored in the location referenced
by endptr.

atox

Convert a floating point number, expressed as a decimal ASCII string in a
form consistent with C, into the extended precision format.

struct xpr atox(const char *s)

s = pointer to null terminated ASCII string expressing a decimal number.

The return value is a structure containing the input number in the extended
precision format.

Remark:

The call atox(s) is equivalent to strtox(s, NULL).

25

xfmod

This function is the extended precision analog of the standard library fmod
function.

struct xpr xfmod(struct xpr s,struct xpr t,struct xpr* q)

s = structure containing operand of fmod;

t = structure containing base number (t!=0);

q = pointer to store for output integer m.

The return value is the extended number with same sign as s and absolute
value less than that of t, satisfying s = m*t + x if s*t>0, or s = -m*t +

x if s*t<0.

xfrexp

This function is the extended precision analog of the standard library frexp
function.

struct xpr xfrexp(struct xpr s,int *p)

s = structure containing operand;

p = pointer to store for output exponent e.

The return value is the extended number satisfying x = s*2^(-e) with (-1

< x < +1).

xfrac

This function returns the fractional part of the input number.

struct xpr xfrac (struct xpr s)

s = structure containing operand.

The return value is the fractional part of the number s, with the same sign
as s.

Remark:

The fractional part of the number s is 0 if s is an integer number, else it is
given by (-)0.xyz..., where xyz... are the digits of s following the radix

26

character (.) in the decimal representation. xfrac(s) has always the same
sign as s.

xtrunc

This function returns the integer part of the input number.

struct xpr xtrunc (struct xpr s)

s = structure containing operand.

The return value is the integer part of the number s, with the same sign as
s.

Remark:

The integer part of the number s is given by (-)xyz..., where xyz... are
the digits of s before the radix character (.) in its decimal representation.

xfix

Obtain the integer part of a number (2nd method).

struct xpr xfix (struct xpr s)

s = structure containing operand.

Remark:

xfix() is provided as an alternative to xtrunc(). xfix() tries to take into
account possible rounding errors and cancel their effects. The use of xfix()
is strongly suggested whenever the argument is presumed to be an integer
number, but it is reasonable to expect that some rounding errors make its
actual value a bit different from that one it should be. For instance, when
sizeof(struct xpr) == 64, on my machine I obtain

xtrunc (xdiv (inttox(100), inttox(100))) == xZero

while one could expect xOne as result. This happens since xdiv (inttox(100),

inttox(100)) returns a number a bit lower than 1. On the other hand

xfix (xdiv (inttox(100), inttox(100))) == xOne .

Care that xfix() introduces another type of rounding error to give the
correct answer in the cases similar to the previous one. So, it is not always
the right choice. :)

27

xround

Round an extended precision number to its nearest integer value (halfway
cases are rounded away from zero).

struct xpr xround (struct xpr s)

s = structure containing operand.

The return value is the integer value nearest to s.

xceil

Round an extended precision number to the smallest integral value not less
than it.

struct xpr xceil (struct xpr s)

s = structure containing operand.

The return value is the smallest integral value not less than it.

xfloor

Round an extended precision number to the largest integral value not greater
than it.

struct xpr xfloor (struct xpr s)

s = structure containing operand.

The return value is the largest integral value not greater than it.

xpr print

Print an extended precision number in scientific or floating point format
onto a given file.

void xpr_print (FILE* stream, struct xpr u, int sc_not,

int sign, int lim)

stream = file where the number must be printed;

u = structure containing number to be printed;

28

sc not = zero to mean floating point format, not zero to mean scientific
format;

sign = not zero to put a plus sign (+) before the number when it is non-
negative (in case of negative number a minus sign (-) is always printed even
if the parameter sign is zero);

lim = number of decimal digits to the right of the decimal point (lim+1 =
total digits displayed) in case of scientific format, else number of significant
digits - 1 (lim+1 = total of significant digits).

xpr asprint

Convert an extended precision number to a string.

char* xpr_asprint (struct xpr u, int sc_not, int sign, int lim)

u = structure containing number to be printed;

sc not = zero to mean floating point format, not zero to mean scientific
format;

sign = not zero to put a plus sign (+) before the number when it is non-
negative (in case of negative number a minus sign (-) is always printed even
if the parameter sign is zero);

lim = number of decimal digits to the right of the decimal point (lim+1 =
total digits displayed) in case of scientific format, else number of significant
digits - 1 (lim+1 = total of significant digits).

xpr asprint() returns the string with the converted number. The memory
for this string is calloc’ed inside the function.

xprxpr

Print an extended precision number in scientific format.

void xprxpr(struct xpr u,int lim)

u = structure containing number to be printed;

lim = number of decimal digits to the right of the decimal point (lim+1 =
total digits displayed).

Remark:

xprxpr(u, lim)

29

is equivalent to

xpr_print(stdout, u, 1, 0, lim)

xtoa

This function converts an extended precision number to a string. Scientific
format is always used.

char* xtoa (struct xpr u,int lim)

u = structure containing number to be printed;

lim = number of decimal digits to the right of the decimal point (lim+1 =
total digits displayed).

Remark:

xtoa(u, lim)

is equivalent to

xpr_asprint(u, 1, 0, lim)

xbprint

Print an extended precision number in binary format.

void xbprint (FILE* stream, struct xpr u)

stream = file where the number must be printed;

u = structure containing number to be printed.

The xbprint() function supports a bit oriented analysis of rounding error
effects. It always prints a newline (\n) at the end of the binary string.

xprint

Print an extended precision number as a string of hexadecimal numbers.

void xprint(FILE* stream, struct xpr u)

30

stream = file where the number must be printed;

u = structure containing number to be printed.

The xprint() function supports a bit oriented analysis of rounding error
effects. It always prints a newline (\n) at the end.

xfout

Print an extended precision number on file according to a given set of I/O
flags.

int xfout (FILE * stream, struct xoutflags ofs, struct xpr x)

stream = file where the number must be printed;

ofs = structure containing all the I/O flags;

x = structure containing number to be printed.

The return value is 0 in case of success, -1 to mean a failure.

Remark:

For the definition of struct xoutflags and the meaning of its fields see
section ”Real Arithmetic”. xfout() does not add any newline at the end of
the printed number.

xout

Print an extended precision number on stdout according to a given set of
I/O flags.

int xout (struct xoutflags ofs, struct xpr x)

ofs = structure containing all the I/O flags;

x = structure containing number to be printed.

The return value is 0 in case of success, -1 to mean a failure.

Remark:

For the definition of struct xoutflags and the meaning of its fields see
section ”Real Arithmetic”. xout() does not add any newline at the end of
the printed number.

xsout

31

Write an extended precision number on a string according to a given set of
I/O flags.

int xsout (char* s, unsigned long n, struct xoutflags ofs,

struct xpr x)

s = pointer to a buffer of characters (char);

n = size of the buffer;

ofs = structure containing all the I/O flags;

x = structure containing number to be printed.

The return value is the number of the non-null characters written to the
buffer or, if it is greater or equal than n, which would have been written to
the buffer if enough space had been available.

Remark:

For the definition of struct xoutflags and the meaning of its fields see
section ”Real Arithmetic”. xsout() always adds a null character (’\0’) at
the end of the written number. xsout() does not write more than n bytes
(including the trailing ’\0’). Thus, a return value of n or more means that
the output was truncated. In this case, the contents of the buffer pointed to
by the first argument of xsout() are COMPLETELY unreliable.

7.3 Extended Precision Math Library

The Extended Precision Math Library provides the elementary functions
normally supported in a C math library. They are designed to provide full
precision accuracy.

xsqrt

Compute the square root of an extended precision number.

struct xpr xsqrt(struct xpr z)

z = structure containing the input number.

The return value is a structure containing the square root of the input
number. Input of a negative argument results in a domain error.

xexp

Compute the exponential function.

32

struct xpr xexp(struct xpr z)

z = structure containing function argument.

The return value is e (the base of natural logarithms) raised to the power
of z.

xexp2

Compute the base-2 exponential function.

struct xpr xexp2(struct xpr z)

z = structure containing function argument.

The return value is 2 raised to the power of z.

xexp10

Compute the base-10 exponential function.

struct xpr xexp10(struct xpr z)

z = structure containing function argument.

The return value is 10 raised to the power of z.

xlog

Compute natural (base e) logarithms.

struct xpr xlog(struct xpr z)

z = structure containing function argument.

This function returns the natural logarithm of its argument. A null or neg-
ative argument results in a domain error.

xlog2

Compute base-2 logarithms.

struct xpr xlog2(struct xpr z)

z = structure containing function argument.

33

This function returns the base-2 logarithm of its argument. A null or negative
argument results in a domain error.

xlog10

Compute base-10 logarithms.

struct xpr xlog10(struct xpr z)

z = structure containing function argument.

This function returns the base-10 logarithm of its argument. A null or neg-
ative argument results in a domain error.

xtan

Tangent function.

struct xpr xtan(struct xpr z)

z = structure containing function argument.

The return value is the tangent of z, where z is given in radians. xtan(z)
returns xPinf when z is equal to xPi2 (up to an integer multiple of xPi),
xMinf when z is equal to -xPi2 (up to an integer multiple of xPi). In both
cases a domain error is produced.

xcos

Cosine function.

struct xpr xcos(struct xpr z)

z = structure containing function argument.

The return value is the cosine of z, where z is given in radians.

xsin

Sine function.

struct xpr xsin(struct xpr z)

z = structure containing function argument.

The return value is the sine of z, where z is given in radians.

34

xatan

Arc tangent function.

struct xpr xatan(struct xpr z)

z = structure containing function argument.

This function returns the arc tangent of z in radians and the value is math-
ematically defined to be between -Pi/2 and Pi/2 (inclusive).

xasin

Arc sine function.

struct xpr xasin(struct xpr z)

z = structure containing function argument.

This function returns the arc sine of z in radians and the value is mathe-
matically defined to be between -Pi/2 and Pi/2 (inclusive). If z falls outside
the range -1 to 1, a domain error is produced.

xacos

Arc cosine function.

struct xpr xacos(struct xpr z)

z = structure containing function argument.

This function returns the arc cosine of z in radians and the value is math-
ematically defined to be between zero and Pi (inclusive). If z falls outside
the range -1 to 1, a domain error is produced.

xtanh

Hyperbolic tangent function.

struct xpr xtanh(struct xpr z)

z = structure containing function argument.

The return value is the hyperbolic tangent of z.

xcosh

Hyperbolic cosine function.

35

struct xpr xcosh(struct xpr z)

z = structure containing function argument.

The return value is the hyperbolic cosine of z.

xsinh

Hyperbolic sine function.

struct xpr xsinh(struct xpr z)

z = structure containing function argument.

The return value is the hyperbolic sine of z.

xatanh

Hyperbolic arc tangent function.

struct xpr xatanh(struct xpr z)

z = structure containing function argument.

This function returns the hyperbolic arc tangent of z. If the absolute value
of z is greater than 1, then a domain error is produced.

xasinh

Hyperbolic arc sine function.

struct xpr xasinh(struct xpr z)

z = structure containing function argument.

This function returns the hyperbolic arc sine of z.

xacosh

Hyperbolic arc cosine function.

struct xpr xacosh(struct xpr z)

z = structure containing function argument.

This function returns the hyperbolic arc cosine of z. If z is less than 1, a
domain error is produced.

36

7.4 Applications of Extended Precision Arithmetic

The Tchebycheff expansion supplied with the library can be used to com-
pute the Tchebycheff expansion coefficients of a function to an accuracy of
32 digits at least. This ability is useful in developing high accuracy function
approximations, since the effect of rounding error on coefficients used in dou-
ble precision can effectively be eliminated with these inputs. The functions
provided to this purpose are xchcof() and xevtch().

xchcof

Compute the Tchebycheff expansion coefficients of a specified function f(x).

struct xpr* xchcof(int m,struct xpr (*xfunc)(struct xpr))

m = index of the last coefficient (the computed coefficients will be m+1,
indexed from 0 to m);

xfunc = pointer to user defined function returning extended precision values
of the function f();

The return value is the array of the computed coefficients. One has that

f(x) = c[0]/2 + Sum(k=1 to m) c[k]*Tk(x)

where Tk(x) is the kth Tchebycheff polynomial.

Remarks:

The memory needed by the returned array is malloc’ed inside the function
xchcof(). To avoid memory leaks it should be explicitly freed through a
call to free(). In case of insufficient memory xchcof() will return NULL.

If m <= XMAX DEGREE (= 50), then the array returned by xchcof() will
have exactly m+1 elements, indexed from 0 to m. But if m > XMAX DEGREE,
then xchcof() will behave as if m was equal to XMAX DEGREE. So, if m >
XMAX DEGREE, then the array returned by xchcof()will have only XMAX DEGREE

+ 1 elements, indexed from 0 to XMAX DEGREE. In other words, a value of
m greater than XMAX DEGREE is ignored and replaced by XMAX DEGREE ! Re-
membering this fact is really important in order to avoid buffer overruns on
the array returned by xchcof() ! XMAX DEGREE is a macro declared inside
the header file xpre.h .

xevtch

Evaluate an extended precision Tchebycheff expansion.

37

struct xpr xevtch(struct xpr z,struct xpr *a,int m)

z = structure containing function argument;

a = structure array containing expansion coefficients;

m = maximum index of coefficient array (dimension=m+1).

The return value is the number given by the formula

f(z) = Sum(k=0 to m) a[k]*Tk(z)

where Tk(x) is the kth Tchebycheff polynomial.

8 Complex Arithmetic

The second module of the HPA library is formed by functions for Extended
Precision Complex Arithmetic and functions of the Extended Precision Com-
plex Math Library. They are all declared in the file cxpre.h together with
some macros and numerical constants.

8.1 Complex constants

The header file cxpre.h defines the constants cxZero (= 0), cxOne (= 1)
and cxIU (= 1i):

extern const struct cxpr cxZero;

extern const struct cxpr cxOne;

extern const struct cxpr cxIU;

which do not need a comment.

8.2 Extended Precision Complex Arithmetic

The functions for complex arithmetic support the basic computation and in-
put/output operations needed for extended precision complex mathematics.
Some of the operations supply capabilities designed to enhance the compu-
tational efficiency of this arithmetic (e.g., cxpwr and cxpow). What follows
is their complete list including the synopsis for each of them.

38

cxreset

Make a new complex number from its real and imaginary parts.

struct cxpr cxreset (struct xpr re, struct xpr im)

re = structure containing real part;

im = structure containing imaginary part.

The value returned by cxreset() is the complex number having re as its
real part, im as its imaginary part.

Remark:

cxreset() is also available in the form of a macro:

#define CXRESET(re, im) (struct cxpr){re, im}

cxconv

Convert a real number into a complex one.

struct cxpr cxconv (struct xpr x)

re = structure containing real part.

The value returned by cxconv() is the complex number having x as its real
part, zero as its imaginary part.

Remark:

cxconv() is also available in the form of a macro:

#define CXCONV(x) (struct cxpr){x, xZero}

cxre

Obtain the real part of a complex number.

struct xpr cxre (struct cxpr z)

z = structure containing a complex number.

39

The value returned by cxre(z) is the real part of z.

Remark:

cxre() is also available in the form of a macro:

#define CXRE(z) (z).re

cxim

Obtain the imaginary part of a complex number.

struct xpr cxim (struct cxpr z)

z = structure containing a complex number.

The value returned by cxim(z) is the imaginary part of z.

Remark:

cxim() is also available in the form of a macro:

#define CXIM(z) (z).im

cxswap

Swapping the real and the imaginary part of a complex number.

struct cxpr cxswap (struct cxpr z)

z = structure containing a complex number.

The value returned by cxswap(z) is the complex number {cxim(z), cxre(z)}.

Remark:

cxswap() is also available in the form of a macro:

#define CXSWAP(z) (struct cxpr){(z).im, (z).re}

cxconj

Calculate the complex conjugate of a complex number.

40

struct cxpr cxconj (struct cxpr z)

z = structure containing a complex number.

The cxconj() function returns the complex conjugate value of its argument,
that is the value obtained by changing the sign of the imaginary part.

cxneg

struct cxpr cxneg (struct cxpr z)

z = structure containing a complex number.

cxneg(z) returns the complex number -z: if z = a+ib, then cxneg(z) re-
turns -a-ib.

cxinv

Obtain the reciprocal of a complex number.

struct cxpr cxinv (struct cxpr z)

z = structure containing a complex number.

The value returned by cxinv() is the reciprocal of its argument. If z is zero,
then a division-by-zero error is produced.

cxabs

Calculate the absolute value of a complex number.

struct xpr cxabs (struct cxpr z)

z = structure containing a complex number.

cxabs(z) returns the absolute value of the complex number z. The result is
a real number.

cxarg

Calculate the argument of a complex number.

struct xpr cxarg (struct cxpr z)

41

z = structure containing a complex number.

cxarg(z) returns the argument or phase angle of the complex number z.
The result is a real number in the range [-xPi,xPi).

cxadd

Add (subtract) two extended precision complex numbers.

struct cxpr cxadd (struct cxpr z1, struct cxpr z2, int k)

z1 = structure containing first number;

z2 = structure containing second number;

k = control flag: if 0, then z1 and z2 are added, else they are subtracted
(z1-z2).

The value returned by cxadd() is a structure containing the result of the
addition (subtraction).

cxsum

Add two extended precision complex numbers.

struct cxpr cxsum (struct cxpr z1, struct cxpr z2)

z1 = structure containing first number;

z2 = structure containing second number.

The value returned by cxsum() is a structure containing the result of the
addition z1 + z2.

cxsub

Subtract two extended precision complex numbers.

struct cxpr cxsub (struct cxpr z1, struct cxpr z2)

z1 = structure containing first number;

z2 = structure containing second number.

The value returned by cxsub() is a structure containing the result of the
subtraction z1 - z2.

cxmul

42

Multiply two extended precision complex numbers.

struct cxpr cxmul (struct cxpr z1, struct cxpr z2)

z1 = structure containing first number;

z2 = structure containing second number.

The value returned by cxmul() is a structure containing the product z1 *

z2.

cxrmul

Multiply a complex number by a real one.

struct cxpr cxrmul (struct xpr c, struct cxpr z)

c = structure containing a real number;

z = structure containing a complex number.

The value returned by cxrmul() is a structure containing the product c *

z.

cxdrot

Multiply a complex number by the imaginary unit.

struct cxpr cxdrot (struct cxpr z)

z = structure containing a complex number.

The value returned by cxdrot(z) is the product of z by the imaginary unit.

cxrrot

Multiply a complex number by -1i, where 1i is the imaginary unit.

struct cxpr cxrrot (struct cxpr z)

z = structure containing a complex number.

The value returned by cxrrot(z) is the product of z by the negative imag-
inary unit.

cxdiv

Divide two extended precision complex numbers.

43

struct cxpr cxdiv (struct cxpr z1, struct cxpr z2)

z1 = structure containing first number;

z2 = structure containing second number.

The value returned by cxdiv(z1, z2) is a structure containing the quotient
z1 / z2. If z2 is zero, then a division-by-zero error is produced.

cxgdiv

Gaussian division between complex numbers having real and imaginary part
both integer.

struct cxpr cxgdiv (struct cxpr z1, struct cxpr z2)

z1 = structure containing first number;

z2 = structure containing second number.

After eventually rounding z1 and z2 by recalling cxround() (see below) on
them, cxgdiv(z1, z2) returns a structure containing the quotient of the
gaussian division of z1 by z2. If z2 is zero, then a division-by-zero error is
produced.

If you do not know what gaussian division means, probably you will never
need this function :)

cxgmod

Remainder of the Gaussian division.

struct cxpr cxgmod (struct cxpr z1, struct cxpr z2)

z1 = structure containing first number;

z2 = structure containing second number.

After eventually rounding z1 and z2 by recalling cxround() (see below) on
them, cxgmod(z1, z2) returns a structure containing the remainder of the
gaussian division of z1 by z2. If z2 is zero, then a division-by-zero error is
produced.

If you do not know what gaussian division means, probably you will never
need this function :)

cxidiv

Integer division.

44

struct cxpr cxidiv (struct cxpr z1, struct cxpr z2)

z1 = structure containing first number;

z2 = structure containing second number.

After eventually rounding z1 and z2 by recalling cxround() (see below) on
them, cxidiv(z1, z2) returns a structure containing the quotient of the
integer division of z1 by z2. If z2 is zero, then a division-by-zero error is
produced. cxidiv() is a smooth extension of the integer division between
real numbers.

cxmod

Remainder of the integer division .

struct cxpr cxmod (struct cxpr z1, struct cxpr z2)

After eventually rounding z1 and z2 by recalling cxround() (see below) on
them, cxmod(z1, z2) returns a structure containing the remainder of the
integer division of z1 by z2. If z2 is zero, then a division-by-zero error is
produced.

cxpwr

Raise to integer powers.

struct cxpr cxpwr (struct cxpr z, int n)

z = structure containing input number;

n = power desired.

The return value is a structure containing the nth power of the first argu-
ment.

cxpow

Power function.

struct cxpr cxpow (struct cxpr z1, struct cxpr z2)

z1 = base;

z2 = exponent.

45

The return value is a structure containing the power of the first argument
raised to the second one. Note that the modulus of the first argument must
be positive, i.e. greater than zero, if the real part of z2 is less or equal than
zero, otherwise a bad-exponent error will be produced.

cxsqr

Square of a number.

struct cxpr cxsqr (struct cxpr z)

This function returns the square of its argument.

cxroot

Nth root of a complex number.

struct cxpr cxroot (struct cxpr z, int i, int n)

cxroot(z,i,n) returns the ith branch of the nth root of z. If n is zero or
n is negative and the modulus of z is zero, then a bad-exponent error is
produced.

cxsqrt

Principal branch of the square root of a complex number.

struct cxpr cxsqrt (struct cxpr z)

This function returns the principal branch of the square root of its argument.

cxprcmp

Compare two extended precision complex numbers.

struct cxprcmp_res cxprcmp (const struct cxpr* z1,

const struct cxpr* z2)

z1 = pointer to first number;

z2 = pointer to second number.

The value returned by cxprcmp() is a structure formed by two comparison
flags:

46

struct cxprcmp_res

{

int re, im;

};

If the .re field of the returned structure is:

+1, then z1->re is greater than z2->re,

0, then z1->re is equal to z2->re,

-1, then z1->re is less than z2->re.

The meaning of the .im field is the same but with respect to z1->im and
z2->im respectively.

Note that the input numbers are not altered by cxprcmp() !

cxis0

Compare a complex number with zero.

int cxis0 (const struct cxpr* z)

z = pointer to an extended precision complex number.

The return value is 0 if *z is not zero, else a non-zero value.

cxnot0

Compare a complex number with zero.

int cxnot0 (const struct cxpr* z)

z = pointer to an extended precision complex number.

The return value is 0 if *z is zero, else a non-zero value.

cxeq

Check if two complex numbers are or are not equal.

int cxeq (struct cxpr z1, struct cxpr z2)

z1 = first number;

z2 = second number.

47

The return value is 0 if z1 and z2 are different, else a non-null value.

cxneq

Check if two complex numbers are or are not equal.

int cxneq (struct cxpr z1, struct cxpr z2)

z1 = first number;

z2 = second number.

The return value is 0 if z1 and z2 are equal, else a non-null value.

cxgt

Check if a complex number is greater than another one.

int cxgt (struct cxpr z1, struct cxpr z2)

z1 = first number;

z2 = second number.

The return value is 0 if z1 is not greater than z2, else a non-null value.

cxge

Check if a complex number is greater or equal to another one.

int cxge (struct cxpr z1, struct cxpr z2)

z1 = first number;

z2 = second number.

The return value is 0 if z1 is not greater or equal to z2, else a non-null value.

cxlt

Check if a complex number is less than another one.

int cxlt (struct cxpr z1, struct cxpr z2)

z1 = first number;

z2 = second number.

48

The return value is 0 if z1 is not less than z2, else a non-null value.

cxle

Check if a complex number is less or equal to another one.

int cxle (struct cxpr z1, struct cxpr z2)

z1 = first number;

z2 = second number.

The return value is 0 if z1 is not less or equal to z2, else a non-null value.

dctocx

Convert a double precision complex number to an extended precision num-
ber.

struct cxpr dctocx (double re, double im)

re = real part of the double precision complex number;

im = imaginary part of the double precision complex number.

The returned value of dctocx(re,im) is the extended precision equivalent
of the complex number (re, im).

cxtodc

Convert an extended precision complex number to a double precision com-
plex number.

void cxtodc (const struct cxpr *z, double *re, double *im)

z = pointer to an extended precision complex number;

re = pointer to a double precision number;

im = pointer to a double precision number.

cxtodc() stores in its second and last argument respectively the real and
the imaginary part of the number pointed to by its first argument.

fctocx

Convert a single precision complex number to an extended precision number.

49

struct cxpr fctocx (float re, float im)

re = real part of the single precision complex number;

im = imaginary part of the single precision complex number.

The returned value of fctocx(re,im) is the extended precision equivalent
of the complex number (re, im).

cxtofc

Convert an extended precision complex number to a single precision complex
number.

void cxtofc (const struct cxpr *z, float *re, float *im)

z = pointer to an extended precision complex number;

re = pointer to a single precision number;

im = pointer to a single precision number.

cxtofc() stores in its second and last argument respectively the real and
the imaginary part of the number pointed to by its first argument.

ictocx

Convert an integer complex number to an extended precision number.

struct cxpr ictocx (long re, long im)

re = real part of the integer complex number;

im = imaginary part of the integer complex number.

The returned value of ictocx(re,im) is the extended precision equivalent
of the complex number (re, im).

uctocx

Convert an integer complex number to an extended precision number.

struct cxpr uctocx (unsigned long re, unsigned long im)

re = real part of the integer complex number;

im = imaginary part of the integer complex number.

50

The returned value of uctocx(re,im) is the extended precision equivalent
of the complex number (re, im).

strtocx

Convert a floating point complex number, expressed as a decimal ASCII
string in a form consistent with C, into the extended precision format.

struct cxpr strtocx (const char *s, char **endptr)

s = pointer to null terminated ASCII string expressing a complex number;

endptr = NULL or address of a pointer to char defined outside strtocx().

The value returned by strtocx() is a structure containing the input number
in the extended precision format.

Remarks:

The strtocx() function converts the initial portion of the string pointed to
by s to its extended precision representation.

The expected form of the (initial portion of the) string is optional leading
white space as recognized by the standard library function isspace(), an
optional plus (+) or minus sign (-) and then a decimal number. A decimal
number consists of a nonempty sequence of decimal digits possibly con-
taining a radix character (decimal point, i.e. ’.’), optionally followed by a
decimal exponent. A decimal exponent consists of an E or e, followed by an
optional plus or minus sign, followed by a non-empty sequence of decimal
digits, and indicates multiplication by a power of 10.

After this decimal number there can be an i character or, alternatively,
some optional white spaces, an optional plus (+) or minus sign (-) and
then another decimal number followed by an i character. Examples of valid
representations of complex numbers are:

"12","34.56",".7895i","-34.56-7.23i", "-45.7 +23.4i".

This function returns the converted value, if any. If the correct value for the
real or/and the imaginary part would cause overflow, then xPinf or xMinf
is returned in the corresponding field, according to the sign of the value. If
the correct value would cause underflow, xZero is returned. If no conversion
is performed, xNaN is returned.

If endptr is not NULL, a pointer to the character after the last character
used in the conversion is stored in the location referenced by endptr. If no
conversion is performed, the value of s is stored in the location referenced
by endptr.

51

atocx

Convert a floating point complex number, expressed as a decimal ASCII
string in a form consistent with C, into the extended precision format.

struct cxpr atocx (const char *s)

s = pointer to null terminated ASCII string expressing a complex number.

The return value is a structure containing the input number in the extended
precision format.

Remark:

The call atocx(s) is equivalent to strtocx(s, NULL).

cxpr asprint

Convert an extended precision complex number to a string.

char *cxpr_asprint (struct cxpr z, int sc_not, int sign,

int lim)

z = structure containing number to be printed;

sc not = zero to mean floating point notation, not zero to mean scientific
notation;

sign = not zero to put a plus sign (+) before the real part of the number
when it is non-negative (in case of negative real part a minus sign (-) is
always printed even if the parameter sign is zero);

lim = number of decimal digits to the right of the decimal point (lim+1 =
total digits displayed) in case of scientific notation, else number of significant
digits - 1 (lim+1 = total of significant digits).

cxpr asprint() returns the string with the converted number. The memory
for this string is calloc’ed inside the function. cxpr asprint() uses always
the format "a+bi" in the conversion.

cxtoa

This function converts an extended precision complex number to a string.
Scientific notation is always used for both real and imaginary part.

char *cxtoa (struct cxpr z, int lim)

52

z = structure containing number to be printed;

lim = number of decimal digits to the right of the decimal point (lim+1 =
total digits displayed).

Remark:

cxtoa(z, lim)

is equivalent to

cxpr_asprint(z, 1, 0, lim)

cxfrac

Fractional part of both real and imaginary part.

struct cxpr cxfrac (struct cxpr z)

cxfrac(z) returns {xfrac(z.re), xfrac(z.im)}.

cxtrunc

Integer part of both real and imaginary part.

struct cxpr cxtrunc (struct cxpr z)

cxtrunc(z) returns {xtrunc(z.re), xtrunc(z.im)}.

cxfix

Integer part of both real and imaginary part (2nd method).

struct cxpr cxfix (struct cxpr z)

cxfix(z) returns {xfix(z.re), xfix(z.im)}.

cxround

Rounding real and imaginary part to the nearest integer values (halfway
cases are rounded away from zero).

struct cxpr cxround (struct cxpr z)

53

cxround(z) returns {xround(z.re), xround(z.im)}.

cxfloor

Rounding real and imaginary part to the largest integral values not greater
than them.

struct cxpr cxfloor (struct cxpr z)

cxfloor(z) returns {xfloor(z.re), xfloor(z.im)}.

cxceil

Rounding real and imaginary part to the smallest integral values not less
than them.

struct cxpr cxceil (struct cxpr z)

cxceil(z) returns {xceil(z.re), xceil(z.im)}.

cxpr print

Print an extended precision complex number in scientific or floating point
notation onto a given file.

void cxpr_print (FILE * stream, struct cxpr z, int sc_not,

int sign, int lim)

stream = file where the number must be printed;

z = structure containing number to be printed;

sc not = zero to mean floating point notation, not zero to mean scientific
notation;

sign = not zero to put a plus sign (+) before the real part of the number
when it is non-negative (in case of negative real part a minus sign (-) is
always printed even if the parameter sign is zero);

lim = number of decimal digits to the right of the decimal point (lim+1 =
total digits displayed) in case of scientific notation, else number of significant
digits - 1 (lim+1 = total of significant digits).

cxprcxpr

Print an extended precision complex number in scientific notation.

54

void cxprcxpr (struct cxpr z, int m)

z = structure containing number to be printed;

lim = number of decimal digits to the right of the decimal point (lim+1 =
total digits displayed).

Remark:

cxprcxpr(z, lim)

is equivalent to

cxpr_print(stdout, z, 1, 0, lim)

cxprint

Print an extended precision complex number as a couple of strings of hex-
adecimal numbers.

void cxprint (FILE * stream, struct cxpr z)

stream = file where the number must be printed;

z = structure containing number to be printed.

The cxprint() function supports a bit oriented analysis of rounding error
effects. It always prints a newline (\n) at the end.

cxfout

Print an extended precision complex number on file according to a given set
of I/O flags.

int cxfout (FILE * stream, struct xoutflags ofs, struct cxpr z)

stream = file where the number must be printed;

ofs = structure containing all the I/O flags;

z = structure containing number to be printed.

The return value is 0 in case of success, -1 to mean a failure.

Remark:

55

For the definition of struct xoutflags and the meaning of its fields see
section ”Real Arithmetic”. cxfout() does not add any newline at the end
of the printed number.

cxout

Print an extended precision complex number on stdout according to a given
set of I/O flags.

int cxout (struct xoutflags ofs, struct cxpr z)

ofs = structure containing all the I/O flags;

z = structure containing number to be printed.

The return value is 0 in case of success, -1 to mean a failure.

Remark:

For the definition of struct xoutflags and the meaning of its fields see
section ”Real Arithmetic”. cxout() does not add any newline at the end of
the printed number.

cxsout

Write an extended precision complex number on a string according to a
given set of I/O flags.

unsigned long cxsout (char *s, unsigned long n,

struct xoutflags ofs, struct cxpr z)

s = pointer to a buffer of characters (char);

n = size of the buffer;

ofs = structure containing all the I/O flags;

z = structure containing number to be printed.

The return value is the number of the non-null characters written to the
buffer or, if it is greater or equal than n, which would have been written to
the buffer if enough space had been available.

Remark:

For the definition of struct xoutflags and the meaning of its fields see
section ”Real Arithmetic”. cxsout() always adds a null character (’\0’) at
the end of the written number. cxsout() does not write more than n bytes

56

(including the trailing ’\0’). Thus, a return value of n or more means that
the output was truncated. In this case, the contents of the buffer pointed to
by the first argument of cxsout() are COMPLETELY unreliable.

8.3 Extended Precision Complex Math Library

These functions provide the elementary function evaluations normally sup-
ported in a complex math library. They are designed to provide full precision
accuracy.

cxexp

Compute the complex exponential function.

struct cxpr cxexp (struct cxpr z)

z = structure containing function argument.

The return value is e (the base of natural logarithms) raised to the power
of z.

cxexp2

Compute the base-2 complex exponential function.

struct cxpr cxexp2 (struct cxpr z)

z = structure containing function argument.

The return value is 2 raised to the power of z.

cxexp10

Compute the base-10 complex exponential function.

struct cxpr cxexp10 (struct cxpr z)

z = structure containing function argument.

The return value is 10 raised to the power of z.

cxlog

Compute natural (base e) logarithm of a complex number.

57

struct cxpr cxlog (struct cxpr z)

z = structure containing function argument.

This function returns the natural logarithm of its argument. A null argument
results in a domain error. The imaginary part of the result is chosen in the
interval [-xPi,xPi).

cxlog2

Compute base-2 logarithm of a complex number.

struct cxpr cxlog2 (struct cxpr z)

z = structure containing function argument.

This function returns the base-2 logarithm of its argument. A null argument
results in a domain error.

cxlog10

Compute base-10 logarithm of a complex number.

struct cxpr cxlog10 (struct cxpr z)

z = structure containing function argument.

This function returns the base-10 logarithm of its argument. A null argument
results in a domain error.

cxlog sqrt

Compute natural (base e) logarithm of the principal branch of the square
root of a complex number.

struct cxpr cxlog_sqrt (struct cxpr z)

z = structure containing function argument.

This function returns the natural logarithm of the principal branch of the
square root of its argument. A null argument results in a domain error. The
imaginary part of the result is chosen in the interval [-xPi2,xPi2).

cxtan

Complex tangent function.

58

struct cxpr cxtan (struct cxpr z)

z = structure containing function argument.

The return value is the tangent of the complex number stored in z. cxtan(z)
yields a domain error when the imaginary part of z is null and the real part
of it is equal to xPi2 up to an integer multiple of xPi.

cxcos

Complex cosine function.

struct cxpr cxcos (struct cxpr z)

z = structure containing function argument.

The return value is the cosine of the complex number stored in z.

cxsin

Complex sine function.

struct cxpr cxsin (struct cxpr z)

z = structure containing function argument.

The return value is the sine of the complex number stored in z.

cxatan

Complex arc tangent function.

struct cxpr cxatan (struct cxpr z)

z = structure containing function argument.

This function returns the arc tangent of the complex number z, i.e. a number
w such that z = tan(w). If the real part of z is null and the imaginary part
is equal to +1 or -1, then a domain error is produced.

cxasin

Complex arc sine function.

struct cxpr cxasin (struct cxpr z)

59

z = structure containing function argument.

This function returns the arc sine of the complex number z, i.e. a number w
such that z = sin(w).

cxacos

Complex arc cosine function.

struct cxpr cxacos (struct cxpr z)

z = structure containing function argument.

This function returns the arc cosine of the complex number z, i.e. a number
w such that z = cos(w).

cxtanh

Complex hyperbolic tangent function.

struct cxpr cxtanh (struct cxpr z)

z = structure containing function argument.

The return value is the hyperbolic tangent of the complex number stored in
z. cxtanh(z) yields a domain error when the real part of z is null and the
imaginary part of it is equal to xPi2 up to an integer multiple of xPi.

cxcosh

Complex hyperbolic cosine function.

struct cxpr cxcosh (struct cxpr z)

z = structure containing function argument.

The return value is the hyperbolic cosine of the complex number stored in
z.

cxsinh

Complex hyperbolic sine function.

struct cxpr cxsinh (struct cxpr z)

60

z = structure containing function argument.

The return value is the hyperbolic sine of the complex number stored in z.

cxatanh

Complex hyperbolic arc tangent function.

struct cxpr cxatanh (struct cxpr z)

z = structure containing function argument.

This function returns the hyperbolic arc tangent of the complex number z,
i.e. a number w such that z = tanh(w). If the imaginary part of z is null
and the real part of it is equal to +1 or -1, then a domain error is produced.

cxasinh

Complex hyperbolic arc sine function.

struct cxpr cxasinh (struct cxpr z)

z = structure containing function argument.

This function returns the hyperbolic arc sine of the complex number z, i.e.
a number w such that z = sinh(w).

cxacosh

Complex hyperbolic arc cosine function.

struct cxpr cxacosh (struct cxpr z)

z = structure containing function argument.

This function returns the hyperbolic arc cosine of the complex number z,
i.e. a number w such that z = cosh(w).

FINAL REMARK:

The header file cxpre.h also defines the macros cxconvert, cxdiff, cxprod
and cxipow:

#define cxconvert cxconv

#define cxdiff cxsub

#define cxprod cxmul

#define cxipow cxpwr

61

allowing to use cxconvert as synonym of cxconv, cxdiff as synonym of
cxsub, cxprod in place of cxmul and cxipow for cxpwr.

9 The C++ interface

The HPA library supplies a C++ wrapper allowing to perform high precision
computations with the same syntax of the normal code. Using the C++
wrapper allows you to do things like:

// Compute the factorial of the integer n

xreal factorial(xreal n)

{

xreal i;

xreal product = 1;

for (i=2; i <= n; i++)

product *= i;

return product;

}

Technically, the C++ wrapper is contained in a separate library. However,
this module is distributed together with the HPA library as an extension to
it. Therefore, I decided to add a section to this manual in order to describe
the C++ interface of this extension. This one is formed by two classes, called
xreal and xcomplex respectively. The type xreal can be used to declare or
define real variables. Moreover, it defines the mathematical operations and
functions which can be used with them. The same is for the type xcomplex

with respect to complex variables and to their manipulation. Having vari-
ables of xreal and xcomplex type you can use the same syntax as if you were
just writing normal code, but all the computations will be performed with
the high precision math library. Of course, this possibility greatly simplifies
the writing of code. Note the difference between

struct xpr x, y;

char buffer[256];

while ((fgets (buffer, 256, stdin)))

{

x = atox (buffer);

printf ("The square root of 2 * %s + 1 is ", buffer);

y = xadd (xpr2(x, 1), xOne, 0);

62

xprxpr (xsqrt (y), 30);

putchar (’\n’);

}

and its C++ version:

xreal x;

while (x.getfrom(cin) > 0)

cout << "The square root of 2 * " << x << " + 1 is "

<< sqrt(2 * x + 1) << endl;

which is much more compact and easier to understand.

The use of the C++ wrapper requires however a recent and ANSI-compliant
C++ compiler (for instance g++ 3.x). Moreover, before declaring or defining
variables of xreal type and before using anyone of the functions or operators
declared in the header file xreal.h, you have to put the line

#include <xreal.h>

in your source code file.

Analogously, before declaring or defining variables of xcomplex type and
before using anyone of the functions or operators declared in the header file
xcomplex.h, you have to add the line

#include <xcomplex.h>

to your source code file.

After that, it is recommendable to add the directive

using namespace HPA;

since all the objects of the C++ wrapper are declared or defined within the
namespace HPA. Alternatively, you should always use the prefix HPA:: in
front of any identifiers coming from the files xreal.h or xcomplex.h. This is
in order to tell the compiler where looking for the classes xreal, xcomplex
and all the related stuff.

This code comes from a real world program:

63

#include<iostream>

#include<xreal.h>

using namespace HPA;

int main (void)

{

xreal x;

while (x.getfrom(cin) > 0)

cout << "The square root of 2 * " << x << " + 1 is "

<< sqrt(2 * x + 1) << endl;

return 0;

}

It is remarkable that the header files xreal.h and xcomplex.h make also
directly available the standard classes ostream, istream and string (see
sections ”The xreal class” and ”The xcomplex class”).

10 Compiling and linking with the C++ wrapper

When you have to compile and build a program making use of the C++
wrapper to the HPA library, you can do it by following the same instructions
given in the section Compiling and linking, by only taking care to use
hpaxxconf in place of hpaconf, just as in:

c++ -c $(hpaxxconf -c) example.cc

c++ -c ‘hpaxxconf -c‘ example.cc

to compile the file example.cc and obtain the object file example.o, or in

c++ example.o $(hpaxxconf -l) -o example

c++ example.o ‘hpaxxconf -l‘ -o example

to do the linkage. If you want, you may also compile and build at the same
time by using

c++ example.cc $(hpaxxconf -c -l) -o example

64

c++ example.cc ‘hpaxxconf -c -l‘ -o example

Naturally, all these samples assume that you are working with bash or with
another shell sh-compatible. In any case, the synopsis of hpaxxconf is the
same as for hpaconf.

Warning: The command hpaxxconf is available only if the C++ wrapper
was built together with the HPA library when this one was installed on
the system where you are working. Actually it is possible to install the
HPA library without its C++ wrapper. In this case, if you try to recall the
command hpaxxconf, the shell will print the error message "Command not

found" or something like that.

11 The xreal class

The interface of the xreal class is contained in the header file xreal.h,
whose contents you can find here suitably commented:

#ifndef _XREAL_H_

#define _XREAL_H_

#include <xpre.h>

#include <iostream>

#include <string>

using std::ostream;

using std::istream;

using std::string;

namespace HPA {

class xreal {

// << and >> are used respectively for the output and the

// input of extended precision numbers.

// The input operator >> actually reads a double precision

// number and then converts it to an extended precision

// number. This can have undesirable rounding effects.

// To avoid them, use the input function

// xreal::getfrom() (see below).

friend ostream& operator<< (ostream& os, const xreal& x);

friend istream& operator>> (istream& is, xreal& x);

65

// +, -, *, / are the usual arithmetic operators

friend xreal operator+ (const xreal& x1, const xreal& x2);

friend xreal operator- (const xreal& x1, const xreal& x2);

friend xreal operator* (const xreal& x1, const xreal& x2);

friend xreal operator/ (const xreal& x1, const xreal& x2);

// x % n is equal to x * pow (2,n)

friend xreal operator% (const xreal& x1, int n);

// ==, !=, <=, >=, <, > are the usual comparison operators

friend int operator== (const xreal& x1, const xreal& x2);

friend int operator!= (const xreal& x1, const xreal& x2);

friend int operator<= (const xreal& x1, const xreal& x2);

friend int operator>= (const xreal& x1, const xreal& x2);

friend int operator< (const xreal& x1, const xreal& x2);

friend int operator> (const xreal& x1, const xreal& x2);

// sget (s, n, x) tries to read an extended precision

// number from the string ’s’ starting from the position

// ’n’. The retrieved number is converted and stored in

// ’x’. The return value is the number of characters

// composing the decimal representation of this number

// as read from ’s’. For instance, if s == "12.34dog" and

// n == 0, then ’x’ is set to 12.34 and the return value

// is 5.

// If the portion of ’s’ starting from the position ’n’

// can not be converted to a number, then ’x’ is set to

// xNAN and 0 is returned.

// If the exactly converted value would cause overflow,

// then xINF or x_INF is returned, according to the sign

// of the value.

// If ’n’ is greater or equal to the length of ’s’, then 0

// is returned while ’x’ is set to xZERO.

friend unsigned long sget (string s, unsigned long startptr,

xreal& x);

// bget (buff, x) tries to read an extended precision

// number from the buffer pointed to by ’buff’.

// The retrieved number is converted and stored in ’x’.

// The return value is a pointer to the character after

// the last character used in the conversion.

// For instance, if ’buff’ is a pointer to the buffer

// "12.34dog", then ’x’ is set to 12.34 and the return

// value is a pointer to "dog" (that is to say, it points

66

// to the character ’d’).

// If the initial portion of the string pointed to by ’buff’

// can not be converted to a number, then ’x’ is set to xNAN

// and ’buff’ is returned.

// If the exactly converted value would cause overflow,

// then xINF or x_INF is returned, according to the sign

// of the value.

// If ’buff’ is NULL (0), then an error message is printed

// on ’cerr’ (standard error device).

friend const char* bget (const char* buff, xreal& x);

// compare (x1, x2) returns

//+1 to mean x1 > x2

// 0 to mean x1 == x2

//-1 to mean x1 < x2

friend int compare (const xreal& x1, const xreal& x2);

//isNaN (x) returns 1 when x == xNAN, else 0

friend int isNaN (const xreal& x);

// The following functions do not need a particular comment:

// each of them is defined as the corresponding function

// of the standard math library, that is to say the function

// from <cmath> having the same name.

// However qfmod(), sfmod(), frac() and fix() do not have

// counterparts in the standard math library.

// With respect to fmod(), qfmod() requires one more

// argument, where it stores the quotient of the division of

// the first argument by the second one.

// sfmod (x,&p) stores in the integer variable pointed to by

// ’p’ the integer part of ’x’ and, at the same time, it

// returns the fractional part of ’x’.

// The usage of sfmod() is strongly discouraged.

// frac() returns the fractional part of its argument.

// At last, fix() is a frontend to the xfix()

// function (see section "Extended Precision Floating

// Point Arithmetic").

friend xreal abs (const xreal& s);

friend xreal frexp (const xreal& s, int *p);

friend xreal qfmod (const xreal& s, const xreal& t, xreal& q);

friend xreal fmod (const xreal& s, const xreal& t);

friend xreal sfmod (const xreal& s, int *p);

friend xreal frac (const xreal& x);

friend xreal trunc (const xreal& x);

67

friend xreal round (const xreal& x);

friend xreal ceil (const xreal& x);

friend xreal floor (const xreal& x);

friend xreal fix (const xreal& x);

friend xreal tan (const xreal& x);

friend xreal sin (const xreal& x);

friend xreal cos (const xreal& x);

friend xreal atan (const xreal& a);

friend xreal asin (const xreal& a);

friend xreal acos (const xreal& a);

friend xreal sqrt (const xreal& u);

friend xreal exp (const xreal& u);

friend xreal exp2 (const xreal& u);

friend xreal exp10 (const xreal& u);

friend xreal log (const xreal& u);

friend xreal log2 (const xreal& u);

friend xreal log10 (const xreal& u);

friend xreal tanh (const xreal& v);

friend xreal sinh (const xreal& v);

friend xreal cosh (const xreal& v);

friend xreal atanh (const xreal& v);

friend xreal asinh (const xreal& v);

friend xreal acosh (const xreal& v);

friend xreal pow (const xreal& x, const xreal& y);

public:

// Various constructors. They allow to define

// an extended precision number in several ways.

// Moreover, they allow for conversions from other

// numeric types.

xreal (const struct xpr* px = &xZero);

xreal (struct xpr x);

xreal (double x);

xreal (float x);

xreal (int n);

xreal (long n);

xreal (unsigned int u);

xreal (unsigned long u);

// This constructor requires a special comment. When

// only the first argument is present, the initial portion

// of the string pointed to by this argument is converted

// into an extended precision number, if a conversion is

// possible. If no conversion is possible, then the

68

// returned number is xNAN. When the second argument is

// present and is not null, it must be the address of a

// valid pointer to ’char’.

// Before returning, the constructor will set this pointer

// so that it points to the character after the last

// character used in the conversion.

xreal (const char* str, char** endptr = 0);

xreal (string str);

xreal (const xreal& x);

// Assignment operators. They do not require

// any explanation with the only exception of ’%=’,

// which combines a ’%’ operation with an assignment.

// So, x %= n is equivalent to x *= pow(2,n) .

xreal& operator= (const xreal& x);

xreal& operator+= (const xreal& x);

xreal& operator-= (const xreal& x);

xreal& operator*= (const xreal& x);

xreal& operator/= (const xreal& x);

xreal& operator%= (int n);

// Increment and decrement operators. Both prefixed

// and postfixed versions are defined.

xreal& operator++ ();

xreal& operator-- ();

xreal& operator++ (int dummy);

xreal& operator-- (int dummy);

// Destructor. You will never have to recall it

// explicitly in your code.

~xreal (void);

// Integer exponent power. For any extended precision

// number ’x’, x(n) is equal to ’x’ raised to the power

// of ’n’.

xreal operator() (int n) const;

// This is the usual unary minus.

xreal operator-() const;

// For any extended precision number ’x’, !x evaluates to 1

// when ’x’ is null, else it evaluates to 0.

int operator!() const;

69

// x.isneg() returns 1 if ’x’ is negative, else it

// returns 0.

int isneg() const;

// x.exp() returns the exponent part

// of the binary representation of ’x’.

int exp() const;

// Functions for conversion. x._2double(), x._2float(),

// x._2xpr() and x._2string() convert the extended precision

// number ’x’ in a double precision number, in a single

// precision number, in a structure of

// type ’xpr’ and in a string respectively.

double _2double () const;

float _2float() const;

struct xpr _2xpr() const;

string _2string() const;

// The member function xreal::getfrom() can be used to

// recover an extended precision number from an input

// stream. The input stream is passed as argument to the

// function.

// The return value is 0 in case of input error (in case

// of End-Of-File for instance).

// When it starts to process its input, this function drops

// all the eventual leading white spaces.

// After reading the first non space character, it

// continues to read from the input stream until it finds

// a white space or reaches the End-Of-File.

// Then it tries to convert into an extended

// precision number the (initial portion of the) string just

// read.

// If no conversion can be performed, then x.getfrom(is)

// sets ’x’ to the value xNAN.

// If the exactly converted value would cause overflow,

// then ’x’ is set to xINF or x_INF, according to the sign

// of the correct value.

int getfrom (istream& is);

// The member function xreal::print() can be used to print

// an extended precision number onto an output stream.

// The output stream is passed to the function as first

// argument. The next three arguments have the same meanings

// of the fields ’notat’, ’sf’ and ’lim’ of the

70

// structure ’xoutflags’ (see section "Real Arithmetic").

int print (ostream& os, int sc_not, int sign, int lim) const;

// The function call x.asprint(sc_not, sign, lim) returns

// a buffer of characters with the representation, in form

// of a decimal ASCII string, of the extended precision

// number ’x’. The arguments ’sc_not’, ’sign’ and ’lim’ are

// used to format the string.

// They have the same meanings of the fields ’notat’, ’sf’

// and ’lim’ of the structure ’xoutflags’ (see section

// "Real Arithmetic").

// The buffer returned by this function is malloc’ed inside

// the function. In case of insufficient memory, the null

// pointer is returned.

char* asprint (int sc_not, int sign, int lim) const;

// The following static functions are used to set

// or get the values of the fields of the structure

// ’xreal::ioflags’. This structure is a static member

// variable of the class ’xreal’ and it is used by the

// output operator << to know how format its second

// argument. The meaning of the fields of the structure

// ’xreal::ioflags’ is explained in the section

// "Real arithmetic".

// xreal::set_notation (which) sets to ’which’ the value

// of ’xreal::ioflags.notat’ .

static void set_notation (short notat);

// xreal::set_signflag (which) sets to ’which’ the value

// of ’xreal::ioflags.sf’ .

static void set_signflag (short onoff);

// xreal::set_mfwd (which) sets to ’which’ the value

// of ’xreal::ioflags.mfwd’ .

static void set_mfwd (short wd);

// xreal::set_lim (which) sets to ’which’ the value

// of ’xreal::ioflags.lim’ .

static void set_lim (short lim);

// xreal::set_padding (which) sets to ’which’ the value

// of ’xreal::ioflags.padding’ .

static void set_padding (signed char ch);

71

// xreal::get_notation () returns the current value

// of ’xreal::ioflags.notat’ .

static short get_notation (void);

// xreal::get_signflag () returns the current value

// of ’xreal::ioflags.sf’ .

static short get_signflag (void);

// xreal::get_mfwd () returns the current value

// of ’xreal::ioflags.mfwd’ .

static short get_mfwd (void);

// xreal::get_lim () returns the current value

// of ’xreal::ioflags.lim’ .

static short get_lim (void);

// xreal::get_padding () returns the current value

// of ’xreal::ioflags.padding’ .

static signed char get_padding (void);

private:

struct xpr br; /* binary representation */

static struct xoutflags ioflags; /* output flags */

};

// xmatherrcode() returns the current value of the global

// variable ’xErrNo’ (see section

// "Dealing with runtime errors") if

// this variable is defined.

// Otherwise xmatherrcode() returns -1.

int xmatherrcode ();

// clear_xmatherr() resets to 0 the value of the global

// variable ’xErrNo’ (see section "Dealing with runtime

// errors") if this variable is defined.

// Otherwise, clear_xmatherr() prints a suitable warning

// on ’cerr’ (standard error device).

void clear_xmatherr ();

// Some useful constants:

// xZERO == 0

// xONE == 1

// xTWO == 2

// xTEN == 10

72

// xINF == +INF

// x_INF == -INF

// xNAN == Not-A-Number

// xPI == Pi Greek

// xPI2 == Pi / 2

// xPI4 == Pi / 4

// xEE == e (base of natural logarithms)

// xSQRT2 == square root of 2

// xLN2 == natural logarithm of 2

// xLN10 == natural logarithm of 10

// xLOG2_E == base-2 logarithm of e

// xLOG2_10 == base-2 logarithm of 10

// xLOG10_E == base-10 logarithm of e

extern const xreal xZERO, xONE, xTWO, xTEN;

extern const xreal xINF, x_INF, xNAN;

extern const xreal xPI, xPI2, xPI4, xEE, xSQRT2;

extern const xreal xLN2, xLN10, xLOG2_E, xLOG2_10, xLOG10_E;

} /* End namespace HPA */

#endif /* _XREAL_H_ */

12 The xcomplex class

The interface of the xcomplex class is contained in the header file xcomplex.h,
whose contents you can find here suitably commented:

#ifndef _XCOMPLEX_H_

#define _XCOMPLEX_H_

#include <cxpre.h>

#include <iostream>

#include <string>

#include "xreal.h"

using std::istream;

using std::ostream;

using std::string;

namespace HPA {

struct double_complex {

73

double re, im;

};

struct float_complex {

float re, im;

};

class xcomplex {

// << and >> are used respectively for the output and the

// input of extended precision complex numbers.

// The input operator >> actually reads a couple of double

// precision numbers and then converts it into

// an extended precision complex number. This can have

// undesirable rounding effects. To avoid them, use the

// input function xcomplex::getfrom() (see below).

friend ostream& operator<< (ostream& os, const xcomplex& x);

friend istream& operator>> (istream& is, xcomplex& x);

// +, -, *, / are the usual arithmetic operators

friend xcomplex

operator+ (const xcomplex& x1, const xcomplex& x2);

friend xcomplex

operator- (const xcomplex& x1, const xcomplex& x2);

friend xcomplex

operator* (const xcomplex& x1, const xcomplex& x2);

friend xcomplex

operator/ (const xcomplex& x1, const xcomplex& x2);

// z % n is equal to z * pow (2,n)

friend xcomplex

operator% (const xcomplex& x1, int n);

// ==, !=, <=, >=, <, > are the usual comparison operators

friend int

operator== (const xcomplex& x1, const xcomplex& x2);

friend int

operator!= (const xcomplex& x1, const xcomplex& x2);

friend int

operator<= (const xcomplex& x1, const xcomplex& x2);

friend int

operator>= (const xcomplex& x1, const xcomplex& x2);

friend int

operator< (const xcomplex& x1, const xcomplex& x2);

friend int

74

operator> (const xcomplex& x1, const xcomplex& x2);

// sget (s, n, x) tries to read an extended precision

// complex number from the string ’s’ starting from the

// position ’n’. The retrieved number is converted and

// stored in ’x’. The return value is the number of

// characters composing the decimal representation of this

// number as read from ’s’.

// For instance, if s == "12.34+6.7idog" and n == 0,

// then ’x’ is set to 12.34+6.7i and the return value

// is 10.

// If the portion of ’s’ starting from the position ’n’ can

// not be converted to a number, then ’x’ is set to

// xNAN + xNANi and 0 is returned.

// If the exactly converted value would cause overflow in

// the real or/and imaginary part, then the real or/and the

// imaginary part of ’x’ is set to xINF or x_INF, according

// to the signs of the correct value.

// If ’n’ is greater or equal to the length of ’s’, then 0

// is returned while ’x’ is set to cxZERO.

friend unsigned long sget (string s, unsigned long startptr,

xcomplex& x);

// bget (buff, x) tries to read an extended precision

// complex number from the buffer pointed to by ’buff’.

// The retrieved number is converted and stored in ’x’.

// The return value is a pointer to the character after

// the last character used in the conversion.

// For instance, if ’buff’ is a pointer to the buffer

// "12.34+6.7idog", then ’x’ is set to 12.34+6.7i and

// the return value is a pointer to "dog" (that is to say,

// it points to the character ’d’).

// If the initial portion of the string pointed to by ’buff’

// can not be converted to a number, then ’x’ is set to

// xNAN + xNANi and ’buff’ is returned.

// If the exactly converted value would cause overflow

// in the real or/and imaginary part, then the real or/and

// the imaginary part of ’x’ is set to xINF or x_INF,

// according to the signs of the correct value.

// If ’buff’ is NULL (0), then an error message is printed

// on ’cerr’ (standard error device).

friend const char* bget (const char* buff, xcomplex& x);

// rmul (x,z) (here ’x’ is a real number) returns the

75

// product x * z.

// It is faster than the * operator.

friend xcomplex rmul (const xreal& x, const xcomplex& z);

// After eventually rounding ’z1’ and ’z2’ by recalling

// round() (see below) on them, gdiv(z1, z2) returns

// the quotient of the gaussian division of ’z1’ by ’z2’.

// If you do not know what gaussian division means, probably

// you will never need this function :)

friend xcomplex

gdiv (const xcomplex& x1, const xcomplex& x2);

// After eventually rounding ’z1’ and ’z2’ by recalling

// round() (see below) on them, gmod(z1, z2) returns

// the remainder of the gaussian division of ’z1’ by ’z2’.

// If you do not know what gaussian division means, probably

// you will never need this function :)

friend xcomplex

gmod (const xcomplex& x1, const xcomplex& x2);

// idiv() is a wrapper to cxidiv() (see section

// "Extended Precision Complex Arithmetic").

friend xcomplex

idiv (const xcomplex& x1, const xcomplex& x2);

// mod() is a wrapper to cxmod() (see section

// "Extended Precision Complex Arithmetic").

friend xcomplex

mod (const xcomplex& x1, const xcomplex& x2);

// conj() returns the complex conjugate of its argument.

friend xcomplex conj (const xcomplex& z);

// inv() returns the complex reciprocal of its argument.

// So inv(z) == 1/z .

friend xcomplex inv (const xcomplex& z);

// swap(z) returns the complex number {z.im, z.re}.

friend xcomplex swap (const xcomplex& z);

// Multiplication by 1i (imaginary unit).

friend xcomplex drot (const xcomplex& z);

// Multiplication by -1i

76

friend xcomplex rrot (const xcomplex& z);

// abs() returns the absolute value (or modulus) of its

// argument.

// The return value of abs() is then an ’xreal’ number.

friend xreal abs (const xcomplex& s);

// arg(z) returns the phase angle (or argument)

// of the complex number ’z’.

// The return value of arg() is an ’xreal’ number

// in the range [-xPI, xPI).

// If ’z’ is null, then a domain-error is produced.

friend xreal arg (const xcomplex& s);

// The next six functions have the same

// meanings of the corresponding real functions,

// but they act upon both the real

// and the imaginary part of their argument.

friend xcomplex frac (const xcomplex& x);

friend xcomplex trunc (const xcomplex& x);

friend xcomplex round (const xcomplex& x);

friend xcomplex ceil (const xcomplex& x);

friend xcomplex floor (const xcomplex& x);

friend xcomplex fix (const xcomplex& x);

// sqr() returns the square of its argument.

friend xcomplex sqr (const xcomplex& u);

// sqrt() returns the principal branch of the square root

// of its argument.

friend xcomplex sqrt (const xcomplex& u);

// root (u,i,n) returns the ’i’th branch of the ’n’th root

// of ’u’. If ’n’ is zero or ’n’ is negative and ’u’ is

// null, then a bad-exponent error is produced.

friend xcomplex root (const xcomplex& u, int i, int n);

// These functions do not require any comment, except that

// tan() and tanh() yield a domain-error in the same cases

// as cxtan() and cxtanh() respectively.

friend xcomplex exp (const xcomplex& u);

friend xcomplex exp2 (const xcomplex& u);

friend xcomplex exp10 (const xcomplex& u);

friend xcomplex tan (const xcomplex& x);

77

friend xcomplex sin (const xcomplex& x);

friend xcomplex cos (const xcomplex& x);

friend xcomplex tanh (const xcomplex& v);

friend xcomplex sinh (const xcomplex& v);

friend xcomplex cosh (const xcomplex& v);

// Natural, base-2 and base-10 logarithm of a complex

// number.

// A null argument results in a domain-error.

// The imaginary part of the return value of log() is always

// in the interval [-xPI,xPI).

friend xcomplex log (const xcomplex& u);

friend xcomplex log2 (const xcomplex& u);

friend xcomplex log10 (const xcomplex& u);

// log_sqrt(u) returns the natural logarithm of the

// principal branch of the square root of ’u’.

// A null argument results in a domain-error.

// The imaginary part of the return value of log_sqrt()

// is always in the interval [-xPI2,xPI2).

friend xcomplex log_sqrt (const xcomplex& u);

// These functions are self-explanatory. atan(z)

// yields a domain-error if the real part of ’z’ is null and

// the imaginary part is equal to ’+1’ or ’-1’.

// Analogously, atanh(z) yields a domain-error if the

// imaginary part of ’z’ is null and the

// real part is equal to ’+1’ or ’-1’.

friend xcomplex atan (const xcomplex& a);

friend xcomplex asin (const xcomplex& a);

friend xcomplex acos (const xcomplex& a);

friend xcomplex atanh (const xcomplex& v);

friend xcomplex asinh (const xcomplex& v);

friend xcomplex acosh (const xcomplex& v);

// The return value of pow() is the power of the first

// argument raised to the second one.

// Note that the modulus of the first argument must be

// positive, i.e. greater than zero, if the real part of

// the second argument is less or equal than zero, otherwise

// a bad-exponent error will be produced.

friend xcomplex pow (const xcomplex& x, const xcomplex& y);

public:

78

// Various constructors. They allow to define

// an extended precision complex number in several ways.

// Moreover, they allow for conversions from other

// numeric types.

xcomplex (const struct cxpr* px = &cxZero);

xcomplex (struct cxpr x);

xcomplex (struct xpr x, struct xpr y = xZero);

xcomplex (xreal x, xreal y = xZERO);

xcomplex (double x, double y = 0.0);

xcomplex (float x, float y = 0.0);

xcomplex (int m, int n = 0);

xcomplex (long m, long n = 0);

xcomplex (unsigned int u, unsigned int v = 0U);

xcomplex (unsigned long u, unsigned long v = 0U);

// This constructor requires a special comment. When

// only the first argument is present, the initial portion

// of the string pointed to by this argument is converted

// into an extended precision complex number, if a

// conversion is possible. If no conversion is possible,

// then the returned number is xNAN + xNANi.

// When the second argument is present and is not null,

// it must be the address of a valid pointer to ’char’.

// Before returning, the constructor will set this pointer

// so that it points to the character after the last

// character used in the conversion.

xcomplex (const char* str, char** endptr = 0);

xcomplex (string str);

xcomplex (const xcomplex& x);

// Assignment operators. They do not require

// any explanation with the only exception of ’%=’,

// which combines a ’%’ operation with an assignment.

// So, x %= n is equivalent to x *= pow(2,n) .

xcomplex& operator= (const xcomplex& x);

xcomplex& operator+= (const xcomplex& x);

xcomplex& operator-= (const xcomplex& x);

xcomplex& operator*= (const xcomplex& x);

xcomplex& operator*= (const xreal& x);

xcomplex& operator/= (const xcomplex& x);

xcomplex& operator%= (int n);

// Increment and decrement operators. Both prefixed

79

// and postfixed versions are defined. These operators

// only act on the real part of their argument.

xcomplex& operator++ ();

xcomplex& operator-- ();

xcomplex& operator++ (int dummy);

xcomplex& operator-- (int dummy);

// Destructor. You will never have to recall it

// explicitly in your code.

~xcomplex (void);

// Integer exponent power. For any extended precision

// complex number ’x’, x(n) is equal to ’x’ raised to

// the power of ’n’.

xcomplex operator() (int n) const;

// This is the usual unary minus.

xcomplex operator-() const;

// For any extended precision complex number ’x’,

// !x evaluates to 1 when

// ’x’ is null, else it evaluates to 0.

int operator!() const;

// Functions for conversion. x._2dcomplex(), x._2fcomplex(),

// x._2cxpr() and x._2string() convert the extended

// precision complex number ’x’ in a double precision

// complex number, in a single precision complex

// number, in a structure of type ’cxpr’ and in a

// string respectively.

double_complex _2dcomplex () const;

float_complex _2fcomplex() const;

struct cxpr _2cxpr() const;

string _2string() const;

// For any extended precision complex number ’z’,

// z.real() and z.imag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of an extended precision number.

xreal real () const;

xreal imag () const;

// For any extended precision complex number ’z’,

// z._real() and z._imag() return, respectively, the

80

// real and the imaginary part of ’z’ in the form

// of a structure of ’xpr’ type.

struct xpr _real () const;

struct xpr _imag () const;

// For any extended precision complex number ’z’,

// z.dreal() and z.dimag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of a double precision number.

double dreal () const;

double dimag () const;

// For any extended precision complex number ’z’,

// z.freal() and z.fimag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of a single precision number.

double freal () const;

double fimag () const;

// For any extended precision complex number ’z’,

// z.sreal() and z.simag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of a string.

string sreal () const;

string simag () const;

// The next functions allow to set (or reset)

// the real and the imaginary part of a complex number.

void real (const xreal& x);

void imag (const xreal& x);

void real (struct xpr x);

void imag (struct xpr x);

void real (const struct xpr* px);

void imag (const struct xpr* px);

void real (double x);

void imag (double x);

void real (float x);

void imag (float x);

void real (int x);

void imag (int x);

void real (long x);

void imag (long x);

void real (unsigned int x);

void imag (unsigned int x);

81

void real (unsigned long x);

void imag (unsigned long x);

void real (const char* str, char** endptr = 0);

void imag (const char* str, char** endptr = 0);

void real (string str);

void imag (string str);

// The member function xcomplex::getfrom() can be used

// to recover an extended precision complex number from an

// input stream. The input stream is passed as argument to

// the function.

// The return value is 0 in case of input error (in case of

// End-Of-File for instance).

// When it starts to process its input, this function drops

// all the eventual leading white spaces.

// After reading the first non space character, it continues

// to read from the input stream until it finds a white

// space or reaches the End-Of-File.

// Then it tries to convert into an extended

// precision complex number the (initial portion of the)

// string just read.

// If no conversion can be performed, then x.getfrom(is)

// sets ’x’ to the value xNAN + xNANi.

// If the exactly converted value would cause overflow in

// the real or/and in the imaginary part, then the real part

// or/and the imaginary part of ’x’ is set to xINF or x_INF,

// according to the signs of the correct value.

int getfrom (istream& is);

// The member function xcomplex::print() can be used to

// print an extended precision complex number onto an output

// stream. The output stream is passed to the function as

// first argument. The next three arguments have the same

// meanings of the fields ’notat’, ’sf’

// and ’lim’ of the structure ’xoutflags’ (see section

// "Real Arithmetic").

int print (ostream& os, int sc_not, int sign, int lim) const;

// The function call x.asprint(sc_not, sign, lim) returns

// a buffer of characters with the representation,

// in form of a decimal ASCII string,

// of the extended precision complex number ’x’.

// The arguments ’sc_not’, ’sign’ and ’lim’ are used

// to format the string.

82

// They have the same meanings of the fields ’notat’, ’sf’

// and ’lim’ of the structure ’xoutflags’ (see section

// "Real Arithmetic").

// The buffer returned by this function is malloc’ed inside

// the function. In case of insufficient memory, the null

// pointer is returned.

char* asprint (int sc_not, int sign, int lim) const;

// The following static functions are used to set

// or get the values of the fields of the structure

// ’xcomplex::ioflags’. This structure is a static member

// variable of the class ’xcomplex’ and it is used by

// the output operator << to know how format its second

// argument. The meaning of the

// fields of the structure ’xcomplex::ioflags’ is explained

// in the section "Real arithmetic".

// xcomplex::set_fmt (which) sets to ’which’ the value

// of ’xcomplex::ioflags.fmt’ .

static void set_fmt (short format);

// xcomplex::set_notation (which) sets to ’which’ the value

// of ’xcomplex::ioflags.notat’ .

static void set_notation (short notat);

// xcomplex::set_signflag (which) sets to ’which’ the value

// of ’xcomplex::ioflags.sf’ .

static void set_signflag (short onoff);

// xcomplex::set_mfwd (which) sets to ’which’ the value

// of ’xcomplex::ioflags.mfwd’ .

static void set_mfwd (short wd);

// xcomplex::set_lim (which) sets to ’which’ the value

// of ’xcomplex::ioflags.lim’ .

static void set_lim (short lim);

// xcomplex::set_padding (which) sets to ’which’ the value

// of ’xcomplex::ioflags.padding’ .

static void set_padding (signed char ch);

// xcomplex::set_ldelim (ch) sets to ’ch’ the value

// of ’xcomplex::ioflags.ldel’ .

static void set_ldelim (signed char ch);

83

// xcomplex::set_rdelim (ch) sets to ’ch’ the value

// of ’xcomplex::ioflags.rdel’ .

static void set_rdelim (signed char ch);

// xcomplex::get_fmt () returns the current value

// of ’xcomplex::ioflags.fmt’ .

static short get_fmt (void);

// xcomplex::get_notation () returns the current value

// of ’xcomplex::ioflags.notat’ .

static short get_notation (void);

// xcomplex::get_signflag () returns the current value

// of ’xcomplex::ioflags.sf’ .

static short get_signflag (void);

// xcomplex::get_mfwd () returns the current value

// of ’xcomplex::ioflags.mfwd’ .

static short get_mfwd (void);

// xcomplex::get_lim () returns the current value

// of ’xcomplex::ioflags.lim’ .

static short get_lim (void);

// xcomplex::get_padding () returns the current value

// of ’xcomplex::ioflags.padding’ .

static signed char get_padding (void);

// xcomplex::get_ldelim () returns the current value

// of ’xcomplex::ioflags.ldel’ .

static signed char get_ldelim (void);

// xcomplex::get_rdelim () returns the current value

// of ’xcomplex::ioflags.rdel’ .

static signed char get_rdelim (void);

private:

struct cxpr br; /* binary representation */

static struct xoutflags ioflags; /* output flags */

};

// Some useful constants:

// cxZERO == 0

// cxONE == 1

84

// cxI == 1i

extern const xcomplex cxZERO, cxONE, cxI;

} /* End namespace HPA */

#define xi cxI

#define xj cxI

#define _i cxI

#define _j cxI

#endif /* _XCOMPLEX_H_ */

13 Acknowledgments

Firstly I feel like to thank Daniel A. Atkinson, since without its work the
HPA library would not exist. Next I have to thank Aurelio Marinho Jar-
gas (¡verde (a) aurelio net¿), author of txt2tags (http://txt2tags.sf.net), a
wonderful text formatting and conversion tool, which I extensively used in
writing this document. Last but not least, I want to thank all the people
till now involved in the Free Software community, starting from those ones
directly involved in the GNU project (http://www.gnu.org). Without their
great work, this little one would never be done.

14 GNU Free Documentation License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation,

Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301

USA

Everyone is permitted to copy and distribute verbatim

copies of this license document, but changing it is not

allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook,

85

http://txt2tags.sf.net
http://www.gnu.org

or other functional and useful document "free" in the sense

of freedom: to assure everyone the effective freedom to

copy and redistribute it, with or without modifying it,

either commercially or noncommercially. Secondarily,

this License preserves for the author and publisher a way

to get credit for their work, while not being considered

responsible for modifications made by others.

This License is a kind of "copyleft", which means that

derivative works of the document must themselves be free

in the same sense. It complements the GNU General Public

License, which is a copyleft license designed for free

software.

We have designed this License in order to use it for

manuals for free software, because free software needs free

documentation: a free program should come with manuals

providing the same freedoms that the software does.

But this License is not limited to software manuals; it

can be used for any textual work, regardless of subject

matter or whether it is published as a printed book.

We recommend this License principally for works whose

purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any

medium, that contains a notice placed by the copyright

holder saying it can be distributed under the terms

of this License. Such a notice grants a world-wide,

royalty-free license, unlimited in duration, to use that

work under the conditions stated herein. The "Document",

below, refers to any such manual or work. Any member

of the public is a licensee, and is addressed as "you".

You accept the license if you copy, modify or distribute

the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work

containing the Document or a portion of it, either copied

verbatim, or with modifications and/or translated into

another language.

A "Secondary Section" is a named appendix or a front-matter

86

section of the Document that deals exclusively with the

relationship of the publishers or authors of the Document

to the Document’s overall subject (or to related matters)

and contains nothing that could fall directly within

that overall subject. (Thus, if the Document is in part

a textbook of mathematics, a Secondary Section may not

explain any mathematics.) The relationship could be a

matter of historical connection with the subject or with

related matters, or of legal, commercial, philosophical,

ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections

whose titles are designated, as being those of Invariant

Sections, in the notice that says that the Document is

released under this License. If a section does not fit

the above definition of Secondary then it is not allowed to

be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any

Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that

are listed, as Front-Cover Texts or Back-Cover Texts, in

the notice that says that the Document is released under

this License. A Front-Cover Text may be at most 5 words,

and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a

machine-readable copy, represented in a format whose

specification is available to the general public, that

is suitable for revising the document straightforwardly

with generic text editors or (for images composed of

pixels) generic paint programs or (for drawings) some

widely available drawing editor, and that is suitable for

input to text formatters or for automatic translation to a

variety of formats suitable for input to text formatters.

A copy made in an otherwise Transparent file format whose

markup, or absence of markup, has been arranged to thwart

or discourage subsequent modification by readers is not

Transparent. An image format is not Transparent if used

for any substantial amount of text. A copy that is not

"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include

plain ASCII without markup, Texinfo input format, LaTeX

87

input format, SGML or XML using a publicly available DTD,

and standard-conforming simple HTML, PostScript or PDF

designed for human modification. Examples of transparent

image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only

by proprietary word processors, SGML or XML for which the

DTD and/or processing tools are not generally available,

and the machine-generated HTML, PostScript or PDF produced

by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page

itself, plus such following pages as are needed to hold,

legibly, the material this License requires to appear in

the title page. For works in formats which do not have any

title page as such, "Title Page" means the text near the

most prominent appearance of the work’s title, preceding

the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the

Document whose title either is precisely XYZ or contains

XYZ in parentheses following text that translates XYZ

in another language. (Here XYZ stands for a specific

section name mentioned below, such as "Acknowledgements",

"Dedications", "Endorsements", or "History".) To "Preserve

the Title" of such a section when you modify the Document

means that it remains a section "Entitled XYZ" according

to this definition.

The Document may include Warranty Disclaimers next to

the notice which states that this License applies to the

Document. These Warranty Disclaimers are considered to be

included by reference in this License, but only as regards

disclaiming warranties: any other implication that these

Warranty Disclaimers may have is void and has no effect on

the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium,

either commercially or noncommercially, provided that this

License, the copyright notices, and the license notice

saying this License applies to the Document are reproduced

in all copies, and that you add no other conditions

88

whatsoever to those of this License. You may not use

technical measures to obstruct or control the reading

or further copying of the copies you make or distribute.

However, you may accept compensation in exchange for copies.

If you distribute a large enough number of copies you must

also follow the conditions in section 3.

You may also lend copies, under the same conditions stated

above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that

commonly have printed covers) of the Document, numbering

more than 100, and the Document’s license notice requires

Cover Texts, you must enclose the copies in covers that

carry, clearly and legibly, all these Cover Texts:

Front-Cover Texts on the front cover, and Back-Cover

Texts on the back cover. Both covers must also clearly

and legibly identify you as the publisher of these copies.

The front cover must present the full title with all words

of the title equally prominent and visible. You may add

other material on the covers in addition. Copying with

changes limited to the covers, as long as they preserve

the title of the Document and satisfy these conditions,

can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous

to fit legibly, you should put the first ones listed (as

many as fit reasonably) on the actual cover, and continue

the rest onto adjacent pages.

If you publish or distribute Opaque copies of the

Document numbering more than 100, you must either

include a machine-readable Transparent copy along with

each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general

network-using public has access to download using

public-standard network protocols a complete Transparent

copy of the Document, free of added material. If you use

the latter option, you must take reasonably prudent steps,

when you begin distribution of Opaque copies in quantity,

to ensure that this Transparent copy will remain thus

89

accessible at the stated location until at least one year

after the last time you distribute an Opaque copy (directly

or through your agents or retailers) of that edition to

the public.

It is requested, but not required, that you contact the

authors of the Document well before redistributing any

large number of copies, to give them a chance to provide

you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the

Document under the conditions of sections 2 and 3 above,

provided that you release the Modified Version under

precisely this License, with the Modified Version filling

the role of the Document, thus licensing distribution and

modification of the Modified Version to whoever possesses

a copy of it. In addition, you must do these things in

the Modified Version:

A. Use in the Title Page (and on the covers, if any)

a title distinct from that of the Document, and from

those of previous versions (which should, if there were

any, be listed in the History section of the Document).

You may use the same title as a previous version if the

original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons

or entities responsible for authorship of the modifications

in the Modified Version, together with at least five of

the principal authors of the Document (all of its principal

authors, if it has fewer than five), unless they release

you from this requirement.

C. State on the Title page the name of the publisher of the

Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your

modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices,

a license notice giving the public permission to use

the Modified Version under the terms of this License,

in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of

90

Invariant Sections and required Cover Texts given in the

Document’s license notice.

H. Include an unaltered copy of this License. I. Preserve

the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new

authors, and publisher of the Modified Version as given

on the Title Page. If there is no section Entitled

"History" in the Document, create one stating the title,

year, authors, and publisher of the Document as given on

its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the

Document for public access to a Transparent copy of the

Document, and likewise the network locations given in the

Document for previous versions it was based on. These may

be placed in the "History" section. You may omit a network

location for a work that was published at least four

years before the Document itself, or if the original

publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or

"Dedications", Preserve the Title of the section, and

preserve in the section all the substance and tone of

each of the contributor acknowledgements and/or dedications

given therein.

L. Preserve all the Invariant Sections of the Document,

unaltered in their text and in their titles. Section

numbers or the equivalent are not considered part of

the section titles.

M. Delete any section Entitled "Endorsements". Such a

section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled

"Endorsements" or to conflict in title with any

Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections

or appendices that qualify as Secondary Sections and contain

no material copied from the Document, you may at your option

designate some or all of these sections as invariant. To do

this, add their titles to the list of Invariant Sections

in the Modified Version’s license notice. These titles

must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it

91

contains nothing but endorsements of your Modified Version

by various parties--for example, statements of peer review

or that the text has been approved by an organization as

the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover

Text, and a passage of up to 25 words as a Back-Cover Text,

to the end of the list of Cover Texts in the Modified

Version. Only one passage of Front-Cover Text and one of

Back-Cover Text may be added by (or through arrangements

made by) any one entity. If the Document already includes

a cover text for the same cover, previously added by you

or by arrangement made by the same entity you are acting on

behalf of, you may not add another; but you may replace the

old one, on explicit permission from the previous publisher

that added the old one.

The author(s) and publisher(s) of the Document do not

by this License give permission to use their names for

publicity for or to assert or imply endorsement of any

Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released

under this License, under the terms defined in section

4 above for modified versions, provided that you include

in the combination all of the Invariant Sections of all

of the original documents, unmodified, and list them

all as Invariant Sections of your combined work in its

license notice, and that you preserve all their Warranty

Disclaimers.

The combined work need only contain one copy of this

License, and multiple identical Invariant Sections may

be replaced with a single copy. If there are multiple

Invariant Sections with the same name but different

contents, make the title of each such section unique by

adding at the end of it, in parentheses, the name of the

original author or publisher of that section if known,

or else a unique number. Make the same adjustment to the

section titles in the list of Invariant Sections in the

license notice of the combined work.

92

In the combination, you must combine any sections Entitled

"History" in the various original documents, forming one

section Entitled "History"; likewise combine any sections

Entitled "Acknowledgements", and any sections Entitled

"Dedications". You must delete all sections Entitled

"Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and

other documents released under this License, and replace the

individual copies of this License in the various documents

with a single copy that is included in the collection,

provided that you follow the rules of this License for

verbatim copying of each of the documents in all other

respects.

You may extract a single document from such a collection,

and distribute it individually under this License, provided

you insert a copy of this License into the extracted

document, and follow this License in all other respects

regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other

separate and independent documents or works, in or on a

volume of a storage or distribution medium, is called an

"aggregate" if the copyright resulting from the compilation

is not used to limit the legal rights of the compilation’s

users beyond what the individual works permit. When the

Document is included in an aggregate, this License does

not apply to the other works in the aggregate which are

not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to

these copies of the Document, then if the Document is less

than one half of the entire aggregate, the Document’s Cover

Texts may be placed on covers that bracket the Document

within the aggregate, or the electronic equivalent of covers

if the Document is in electronic form. Otherwise they must

93

appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may

distribute translations of the Document under the terms of

section 4. Replacing Invariant Sections with translations

requires special permission from their copyright holders,

but you may include translations of some or all Invariant

Sections in addition to the original versions of these

Invariant Sections. You may include a translation of this

License, and all the license notices in the Document,

and any Warranty Disclaimers, provided that you also

include the original English version of this License and

the original versions of those notices and disclaimers.

In case of a disagreement between the translation and the

original version of this License or a notice or disclaimer,

the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",

"Dedications", or "History", the requirement (section 4)

to Preserve its Title (section 1) will typically require

changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the

Document except as expressly provided for under this

License. Any other attempt to copy, modify, sublicense

or distribute the Document is void, and will automatically

terminate your rights under this License. However, parties

who have received copies, or rights, from you under this

License will not have their licenses terminated so long as

such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised

versions of the GNU Free Documentation License from time

to time. Such new versions will be similar in spirit to

the present version, but may differ in detail to address

94

new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing

version number. If the Document specifies that a particular

numbered version of this License "or any later version"

applies to it, you have the option of following the terms

and conditions either of that specified version or of any

later version that has been published (not as a draft)

by the Free Software Foundation. If the Document does not

specify a version number of this License, you may choose

any version ever published (not as a draft) by the Free

Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include

a copy of the License in the document and put the following

copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted

to copy, distribute and/or modify this document under

the terms of the GNU Free Documentation License,

Version 1.2 or any later version published by the Free

Software Foundation; with no Invariant Sections, no

Front-Cover Texts, and no Back-Cover Texts. A copy

of the license is included in the section entitled

"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and

Back-Cover Texts, replace the "with...Texts." line with

this:

with the Invariant Sections being LIST THEIR TITLES,

with the Front-Cover Texts being LIST, and with the

Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some

other combination of the three, merge those two alternatives

to suit the situation.

If your document contains nontrivial examples of program

code, we recommend releasing these examples in parallel

under your choice of free software license, such as the

95

GNU General Public License, to permit their use in free

software.

96

	Summary
	License
	General Technical Comments
	General overview
	Dealing with runtime errors
	Compiling and linking
	Real arithmetic
	Real constants
	Extended Precision Floating Point Arithmetic
	Extended Precision Math Library
	Applications of Extended Precision Arithmetic

	Complex Arithmetic
	Complex constants
	Extended Precision Complex Arithmetic
	Extended Precision Complex Math Library

	The C++ interface
	Compiling and linking with the C++ wrapper
	The xreal class
	The xcomplex class
	Acknowledgments
	GNU Free Documentation License

